On fibre inclusions and Kähler manifolds

Author:
Willi Meier

Journal:
Proc. Amer. Math. Soc. **88** (1983), 173-176

MSC:
Primary 55R05; Secondary 55P62

DOI:
https://doi.org/10.1090/S0002-9939-1983-0691303-4

MathSciNet review:
691303

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A map of -complexes is said to be equivalent to a fibre inclusion if there exists a fibration (up to homotopy) . Here some classes of maps of compact Kähler manifolds are presented which are not equivalent to a fibre inclusion.

**[1]**P. Baum,*On the cohomology of homogeneous spaces*, Topology**7**(1968), 15-38. MR**0219085 (36:2168)****[2]**T. Ganea,*Induced fibrations and cofibrations*, Trans. Amer. Math. Soc.**127**(1967), 442-459. MR**0210131 (35:1025)****[3]**H. Glover and B. Homer,*Endomorphisms of the cohomology ring of finite Grassmann manifolds*, Geometric Applications of Homotopy Theory, I (Proc. Springer-Verlag Evanston, 1977), Lecture Notes in Math., vol. 657, Berlin, Heidelberg and New York, 1978, pp. 170-193. MR**513548 (80e:55003)****[4]**D. Gottlieb,*Witnesses, transgressions, and the evaluation map*, Indiana Univ. Math. J.**24**(1975), 825-836. MR**0377874 (51:14043)****[5]**P. Griffiths and J. Harris,*Principles of algebraic geometry*, Wiley, New York, 1978. MR**507725 (80b:14001)****[6]**S. Halperin,*Finiteness in the minimal models of Sullivan*, Trans. Amer. Math. Soc.**230**(1977), 173-199. MR**0461508 (57:1493)****[7]**-,*Rational fibrations, minimal models, and fibrings of homogeneous spaces*, Trans. Amer. Math. Soc.**244**(1978), 199-224. MR**0515558 (58:24264)****[8]**P. Hilton,*On excision and principal fibrations*, Comment. Math. Helv.**35**(1961), 77-84. MR**0164350 (29:1647)****[9]**W. Massey,*Some problems in algebraic topology and the theory of fibre bundles*, Ann. of Math. (2)**62**(1955), 327-359. MR**0074828 (17:653g)****[10]**J.-P. Meyer,*Principal fibrations*, Trans. Amer. Math. Soc.**107**(1963), 177-185. MR**0146843 (26:4362)****[11]**R. Schultz,*Compact fibrings of homogeneous spaces*. I, Compositio Math.**43**(1981), 181-215. MR**622447 (83e:55010a)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55R05,
55P62

Retrieve articles in all journals with MSC: 55R05, 55P62

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0691303-4

Keywords:
Fibre inclusions,
Kähler manifolds,
compact fibrations

Article copyright:
© Copyright 1983
American Mathematical Society