Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On tensor products and extended centroids

Authors: W. K. Nicholson and J. F. Watters
Journal: Proc. Amer. Math. Soc. 88 (1983), 215-217
MSC: Primary 16A12; Secondary 16A20
MathSciNet review: 695244
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For prime algebras $ R$ and $ S$ over a field $ F$ it is shown that each nonzero ideal of $ R \otimes S$ contains a nonzero element $ r \otimes s$, $ r \in R$, $ s \in S$, if and only if $ C(R) \otimes C(S)$ is a field, where $ C(R)$ (respectively $ C(S)$) is the extended centroid of $ R$ (respectively $ S$).

References [Enhancements On Off] (What's this?)

  • [1] S. A. Amitsur, On rings of quotients, Symposia Mathematica 8 (1972), 149-164. MR 0332855 (48:11180)
  • [2] T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), 49-63. MR 0382379 (52:3264)
  • [3] J. Krempa, On semisimplicity of tensor products, (Proc. Antwerp Conf., 1978), Pure and Appl. Math., vol. 51, Dekker, New York, 1979, pp. 105-122. MR 563289 (82b:16008)
  • [4] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584. MR 0238897 (39:257)
  • [5] J. Matczuk, Central closure of semiprime tensor products, Comm. Algebra 10 (1982), 263-278. MR 651603 (83j:16004)
  • [6] R. Resco, A reduction theorem for the primitivity of tensor product, Math. Z. 170 (1980), 65-76. MR 558888 (81h:16016)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A12, 16A20

Retrieve articles in all journals with MSC: 16A12, 16A20

Additional Information

Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society