On tensor products and extended centroids

Authors:
W. K. Nicholson and J. F. Watters

Journal:
Proc. Amer. Math. Soc. **88** (1983), 215-217

MSC:
Primary 16A12; Secondary 16A20

DOI:
https://doi.org/10.1090/S0002-9939-1983-0695244-8

MathSciNet review:
695244

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For prime algebras and over a field it is shown that each nonzero ideal of contains a nonzero element , , , if and only if is a field, where (respectively ) is the extended centroid of (respectively ).

**[1]**S. A. Amitsur,*On rings of quotients*, Symposia Mathematica**8**(1972), 149-164. MR**0332855 (48:11180)****[2]**T. S. Erickson, W. S. Martindale III and J. M. Osborn,*Prime nonassociative algebras*, Pacific J. Math.**60**(1975), 49-63. MR**0382379 (52:3264)****[3]**J. Krempa,*On semisimplicity of tensor products*, (Proc. Antwerp Conf., 1978), Pure and Appl. Math., vol. 51, Dekker, New York, 1979, pp. 105-122. MR**563289 (82b:16008)****[4]**W. S. Martindale III,*Prime rings satisfying a generalized polynomial identity*, J. Algebra**12**(1969), 576-584. MR**0238897 (39:257)****[5]**J. Matczuk,*Central closure of semiprime tensor products*, Comm. Algebra**10**(1982), 263-278. MR**651603 (83j:16004)****[6]**R. Resco,*A reduction theorem for the primitivity of tensor product*, Math. Z.**170**(1980), 65-76. MR**558888 (81h:16016)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A12,
16A20

Retrieve articles in all journals with MSC: 16A12, 16A20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0695244-8

Article copyright:
© Copyright 1983
American Mathematical Society