Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Conditions for some polygonal functions to be Bazilevič


Authors: B. A. Case and J. R. Quine
Journal: Proc. Amer. Math. Soc. 88 (1983), 257-261
MSC: Primary 30C45
DOI: https://doi.org/10.1090/S0002-9939-1983-0695254-0
MathSciNet review: 695254
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Univalent functions in the disc whose image is a particular eight-sided polygonal region determined by two parameters are studied. Whether such a function is Bazilevič is determined in terms of the two parameters, and the set of real $ \alpha $'s is specified such that the function is $ (\alpha ,\beta )$ Bazilevič for some $ \beta $. For any interval $ \left[ {a,b} \right]$ where $ 1 < a \leqslant 3 \leqslant b$, a function of this type which is $ (\alpha ,0)$ Bazilevič precisely when $ \alpha $ is in this interval is found. Examples are given of non-Bazilevič functions with polygonal images and Bazilevič functions which are $ (\alpha ,0)$ Bazilevič for a single value $ \alpha $.


References [Enhancements On Off] (What's this?)

  • [1] A. Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139-169. MR 0417406 (54:5456)
  • [2] I. E. Bazilevič, On a case of integrability in quadratures of the Löwner-Kufarev equation, Mat. Sb. 37 (1955), 471-476. (Russian) MR 0072949 (17:356e)
  • [3] D. Campbell and K. Pearce, Generalized Bazilevič functions, Rocky Mountain J. Math. 9 (1979), 197-226. MR 519937 (80d:30005)
  • [4] J. B. Conway, Functions of one complex variable, Springer-Verlag, New York, 1978. MR 503901 (80c:30003)
  • [5] Z. Nehari, Introduction to complex analysis, rev. ed., Allyn and Bacon, Boston, Mass., 1968. MR 0224780 (37:379)
  • [6] J. C. Plaster, A simple geometric criterion for non-Bazilevičness, Proc. Amer. Math. Soc. (to appear).
  • [7] T. Sheil-Small, On Bazilevič functions, Quart, J. Math. Oxford Ser. (2) 23 (1972), 135-42. MR 0299799 (45:8847)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C45

Retrieve articles in all journals with MSC: 30C45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0695254-0
Keywords: Univalent function, Bazilevič function
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society