ON THE DEGREE OF APPROXIMATION OF A CLASS
OF FUNCTIONS BY MEANS OF FOURIER SERIES

S. M. MAZHAR

Abstract. In this paper degree of approximation of Lebesgue integrable functions
by means of Fourier series is examined.

1. Let \(f \) be a periodic function with period \(2\pi \) and integrable in the sense of
Lebesgue. Let
\[
 f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx).
\]
We write
\[
 \phi(t) = \frac{1}{2} \{ f(x+t) + f(x-t) - 2f(x) \} \quad \text{and} \quad \Phi(t) = \int_0^t |\phi(u)| \, du.
\]
Let
\[
 w_1(\delta) = w_1[f,x](\delta) = \sup_{|h|<\delta} \left\{ \frac{1}{2h} \int_{-h}^{h} |f(x+u) - f(x)| \, du \right\}.
\]
It is clear that for \(f \in C^*[0,2\pi] \), \(w_1(\delta) \leq w[f](\delta) \), where \(w[f](\delta) \) denotes
the modulus of continuity of \(f \).

Let \(\Lambda = (\lambda_{n,k}) \), \(k = 0,1,2,\ldots,n \), be a triangular matrix and let
\[
 \sigma_n = \sum_{k=0}^{n} \lambda_{n,k} s_k,
\]
where \(\{s_k\} \) is a given sequence of numbers. \(\sigma_n \) is called \(n \)th \(\Lambda \)-means of \(\{s_n\} \). If
\(\sigma_n \to s \) as \(n \to \infty \), we say that \(\{s_n\} \) is summable (\(\Lambda \)) to \(s \). We suppose that \(\{\lambda_{n,k}\} \)
is nonnegative with \(\sum_{k=0}^{n} \lambda_{n,k} = 1, n = 0,1,\ldots \). Then a necessary and sufficient
condition for regularity of the \(\Lambda \)-method is \(\lim_{n \to \infty} \lambda_{n,k} = 0 \) for each \(k \).

For
\[
 \lambda_{n,k} = \frac{P_{n-k}}{P_n}, \quad P_n = p_0 + p_1 + \cdots + p_n, p_0 > 0,
\]
the \(\Lambda \)-method reduces to the \((N, p_n)\) method. Similarly for \(\lambda_{n,k} = p_k/P_n \), we get
\((\bar{N}, p_n)\) means.
In what follows we assume that C is a positive constant not necessarily the same at each occurrence.

2. In this paper we establish the following

THEOREM. Suppose for fixed x, $w_1(\delta) < \infty$ for $\delta \in (0, \pi]$, and let $\sigma_n(x)$ denote the nth A-means of the Fourier series of $f(x)$. If $\{\lambda_{n,k}\}$ is nondecreasing with respect to k, then

\[
|\sigma_n(x) - f(x)| \leq C \sum_{k=0}^{n} \frac{w_1(\pi/(k+1))}{k+1} \sum_{\nu=0}^{k} \lambda_{n,n-\nu}.
\]

3. PROOF. We have

\[
\sigma_n(x) - f(x) = \frac{2}{\pi} \int_0^{\pi} \phi(t) \sum_{k=0}^{n} \lambda_{n,k} D_k(t) \, dt
\]

\[
= \frac{2}{\pi} \left(\int_0^{\pi/n} + \int_{\pi/n}^{1} \right) = I_1 + I_2, \quad \text{say},
\]

where

\[
D_k(t) = \frac{\sin \left(k + \frac{1}{2} \right) t}{2 \sin \frac{t}{2}}.
\]

Since

\[
\Phi(t) = \int_0^t |\phi(u)| \, du \leq \frac{1}{2} \int_0^t |f(x + u) - f(x)| \, du \leq tw_1(t),
\]

it follows that

\[
|I_1| \leq \frac{2}{\pi} \int_0^{\pi/n+1} \Phi(t) \sum_{k=0}^{n} \lambda_{n,k} \left(k + \frac{1}{2} \right) \, dt
\]

\[
\leq 2w_1 \left(\frac{\pi}{n+1} \right) \leq 2 \sum_{k=0}^{n} \frac{w_1(\pi/(k+1))}{k+1} \sum_{\nu=0}^{k} \lambda_{n,n-\nu}.
\]

Let γ_n be a sequence of linear functions on $[k, k+1]$ such that $\gamma_n(k) = \lambda_{n,n-k}$, $k = 0, 1, 2, \ldots, n$, and let $F_n(t) = \int_0^t \gamma_n(u) \, du$, $t \geq 0$. Then

\[
F_n(k) = \sum_{\nu=0}^{k-1} \frac{\gamma_n(v+1) + \gamma_n(v)}{2} = \sum_{\nu=0}^{k-1} \frac{\lambda_{n,n-v-1} + \lambda_{n,n-v}}{2}
\]

\[
\leq \sum_{\nu=0}^{k} \lambda_{n,n-\nu} \leq 2F_n(k).
\]

Using the well-known estimate of McFadden [5],

\[
\left| \sum_{k=a}^{b} \lambda_{n,n-k}e^{i(n-k)\xi} \right| \leq 2(2\pi + 1) F_n \left(\frac{\pi}{t} \right),
\]
where $0 < a \leq b \leq \infty$, $0 < t \leq \pi$ and n is any nonnegative integer, we have

$$|I_2| \leq \frac{2}{\pi} \int_{\pi/n+1}^{\pi} \frac{\phi(t)}{t} \sum_{k=0}^{n} \lambda_{n,k} D_k(t) \, dt \leq C \int_{\pi/n+1}^{\pi} \frac{\phi(t)}{t} F_n^{(\pi)}(\frac{\pi}{t}) \, dt$$

$$= C \left\{ \frac{\Phi(t)}{t} F_n^{(\pi)}(\frac{\pi}{t}) \right\}^{\pi} + \int_{\pi/n+1}^{\pi} \frac{\Phi(t)}{t^2} F_n^{(\pi)}(\frac{\pi}{t}) \, dt$$

$$+ \int_{\pi/n+1}^{\pi} \frac{\Phi(t)}{t} F_n^{(\pi)}(\frac{\pi}{t}) \cdot \frac{\pi}{t^2} \, dt \right\}$$

$$= C \left\{ \frac{\Phi(\pi)}{\pi} F_n(1) - \frac{(n+1)}{\pi} \frac{\Phi(\pi/n+1)}{n+1} F_n(n+1) \right.$$}

$$\left. + \int_{1}^{n+1} \frac{\Phi(\pi/t)}{\pi} F_n(t) \, dt + \int_{1}^{n+1} \frac{\Phi(\pi/t)}{\pi} F_n^{(\pi)}(\frac{\pi}{t}) \, dt \right\}$$

$$\leq C w_1(\pi) \lambda_{n,n} + C \sum_{k=1}^{n} \int_{k}^{k+1} \frac{\pi}{t} w_1(\pi/t) F_n(t) \, dt + C \sum_{k=1}^{n} \int_{k}^{k+1} w_1(\pi/t) \gamma_n(t) \, dt$$

$$= I_{21} + I_{22} + I_{23}, \text{ say.}$$

Obviously,

$$I_{21} \leq C \sum_{k=0}^{n} w_1(\frac{\pi}{k+1}) \lambda_{n,n-k} \leq C \sum_{k=0}^{n} \frac{w_1(\pi/(k+1))}{k+1} \sum_{\nu=0}^{k} \lambda_{n,n-\nu}$$

and

$$I_{22} \leq C \sum_{k=1}^{n} \frac{w_1(\pi/k)}{k} F_n(k+1) \leq C \sum_{k=0}^{n} \frac{w_1(\pi/(k+1))}{k+1} \sum_{\nu=0}^{k} \lambda_{n,n-\nu}$$

$$\leq C \sum_{k=0}^{n} \frac{w_1(\pi/(k+1))}{k+1} \sum_{\nu=0}^{k} \lambda_{n,n-\nu}.$$}

Similarly,

$$I_{23} \leq C \sum_{k=1}^{n} \frac{w_1(\pi/k)}{k} \left(\frac{\gamma_n(k) + \gamma_n(k+1)}{2} \right) \leq C \sum_{k=1}^{n} \frac{w_1(\pi/k)}{k} \lambda_{n,n-k}$$

$$\leq C \sum_{k=0}^{n} \frac{w_1(\pi/(k+1))}{k+1} \lambda_{n,n-k} \leq C \sum_{k=0}^{n} \frac{w_1(\pi/(k+1))}{k+1} \sum_{\nu=0}^{k} \lambda_{n,n-\nu}.$$}

Thus

$$|I_2| \leq C \sum_{k=0}^{n} \frac{w_1(\pi/(k+1))}{k+1} \sum_{\nu=0}^{k} \lambda_{n,n-\nu}.$$}

From (3.1) and (3.2) the proof of our theorem follows.

4. Taking $\lambda_{n,k} = p_{n-k}/P_n$, where (p_k) is a positive nonincreasing sequence, we deduce from (2.1) the following theorem due to Markiewicz [4]; the case $p_n = 1$ is due to Aljančić, Bojanic and Tomić [1].
Corollary 1. If for fixed x, $w_1(\delta) < \infty$ for $\delta \in (0, \pi]$, then
\[|t_n(x) - f(x)| \leq \frac{C}{P_n} \sum_{k=0}^{n} \frac{P_k}{k+1} w_1 \left(\frac{\pi}{k+1} \right), \]
where $t_n(x)$ denotes the (N, p_n) means of the Fourier series of $f(x)$.

This result in weaker form, where w_1 is replaced by w, is due to Holland, Sahney and Tzimbalario [3]. For related results concerning Cesàro summability see Obrechkoff [6] and Flett [2].

Corollary 2. If $\{\lambda_{n,k}\}$ is a nonincreasing sequence with respect to k, then under the hypothesis of the theorem,
\[|\sigma_n(x) - f(x)| \leq C \sum_{k=0}^{n} \lambda_{n,k} w_1 \left(\frac{\pi}{k+1} \right). \]

Proof. Let $t_n^*(x)$ denote the $(C, 1)$ mean of the Fourier series. Then taking $\lambda_{n,k} = (n+1)^{-1}$ in our Theorem, we have
\[|t_n^*(x) - f(x)| \leq \frac{C}{n+1} \sum_{k=0}^{n} w_1 \left(\frac{\pi}{k+1} \right). \]

Using a partial summation formula of Abel,
\[\sigma_n(x) - f(x) = \sum_{\nu=0}^{n} \lambda_{n,\nu} (s_{\nu}(x) - f(x)) \]
\[= \sum_{\nu=0}^{n-1} \Delta \lambda_{n,\nu} (\nu+1) (t^*_\nu(x) - f(x)) + \lambda_{n,n} (n+1) (t^*_n(x) - f(x)) \]
\[= \sum_{\nu=0}^{n} (\nu+1) (t^*_\nu(x) - f(x)) \Delta \lambda_{n,\nu}. \]

Since $\Delta \lambda_{n,\nu} \geq 0$ we have, from (4.1),
\[|\sigma_n(x) - f(x)| \leq C \sum_{\nu=0}^{n} \Delta \lambda_{n,\nu} \sum_{k=0}^{\nu} w_1 \left(\frac{\pi}{k+1} \right) \]
\[= C \sum_{k=0}^{n} w_1 \left(\frac{\pi}{k+1} \right) \sum_{\nu=k}^{n} \Delta \lambda_{n,\nu} = C \sum_{k=0}^{n} \lambda_{n,k} w_1 \left(\frac{\pi}{k+1} \right). \]

The author thanks the referee for suggesting the proof of Corollary 2 and also for improvement in the presentation of this paper.

References