Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the necessity of the Hörmander condition for multipliers on $ {\bf H}\sp{p}({\bf R}\sp{n})$

Author: James E. Daly
Journal: Proc. Amer. Math. Soc. 88 (1983), 321-325
MSC: Primary 42B30
MathSciNet review: 695267
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that a class of multiplier operators on $ {{\mathbf{H}}^p}({{\mathbf{R}}^n})$, that send atoms to molecules boundedly, must satisfy a Hörmander condition. This provides a partial converse to a theorem of Taibleson and Weiss.

References [Enhancements On Off] (What's this?)

  • [1] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their uses in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 0447954 (56:6264)
  • [2] J. Daly and K. Phillips, On singular integrals, multipliers, $ {H^p}$, and Fourier series--The local field case (to appear).
  • [3] L. Hörmander, Estimates for translation invariant operators in $ {L^p}$ spaces, Acta Math. 104 (1960), 93-139. MR 0121655 (22:12389)
  • [4] M. Taibleson and G. Weiss, The molecular characterization of Hardy spaces, Astérisque 77 (1980), 67-149. MR 604370 (83g:42012)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B30

Retrieve articles in all journals with MSC: 42B30

Additional Information

Keywords: Multipliers, Hardy spaces, Hörmander condition
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society