AN INJECTIVE METRIZATION FOR COLLAPSIBLE POLYHEDRA

JIE-HUA MAI AND YUN TANG

Abstract. In this paper we prove that any finite collapsible polyhedron is injectively metrizable.

A metric space Y is injective if every mapping which increases no distance from a subspace of any metric space X to Y can be extended, increasing no distance, over X. Isbell [2] proved that every 2-dimensional collapsible polyhedron admits injective metrics. In this paper we generalize the result to any finite collapsible polyhedron, which answers a part of the problem put forward by Isbell [2, 3].

Let S be a simplicial complex. According to [4], S is called collapsible if there is a sequence of increasing subcomplexes S_0, S_1, \ldots, S_n such that S_0 is a point, $S = S_n$ and $S_{i+1} = S_i \cup \{ \Delta_i, \tau \}$, where Δ_i is an r_i-dimensional simplex with an $(r_i - 1)$-dimensional face τ such that $S_i \cap \{ \Delta_i, \tau \} = \emptyset$, $i = 0, 1, \ldots, n - 1$. The polyhedron ∂S of a (collapsible) complex S is called a (collapsible) polyhedron.

Let K be a cubical complex. $I = [0, 1]$, $I^{n+1} = I^n \times I$. Metrize K as follows: assume that each k-cube of K is a copy of I^k; define the distance between two points $x, y \in |K|$ so that if x and y are in a common cell, for example, in $|I^k|$, then the distance

$$d(x, y) = \max_i |x_i - y_i|,$$

where $x = (x_1, \ldots, x_k), y = (y_1, \ldots, y_k) \in |I^k|$; otherwise the distance is the length of the shortest path joining them. Obviously, K then is a convex metric space.

Definition 1. Let K be a cubical complex. Y a connected subset of $|K|$. Y is called a generalized cuboid of K if for any cell of K, for example, I^k, either the intersection $Y \cap |I^k| = \emptyset$, or there are s_i, t_i, $0 \leq s_i \leq t_i \leq 1$, $i = 1, \ldots, k$, such that $Y \cap |I^k| = \{(y_1, \ldots, y_k) \in I^k | s_i \leq y_i \leq t_i, i = 1, \ldots, k\}$.

For convenience, write GC for generalized cuboid.

Definition 2. Let K be a cubical complex. K is called collapsible if there are a sequence of subcomplexes K_0, K_1, \ldots, K_n of K, and nonempty subcomplexes L_i of K_i, $i = 0, 1, \ldots, n$, such that K_0 is one point, $K = K_n$, and $K_{i+1} = K_i \cup L_i \times I$, where

$$L_i \times I = \{ c \times \{0\}, c \times I, c \times \{1\} | c \in L_i \}, \quad I = [0, 1],$$

$i = 0, 1, \ldots, n - 1$. Such K is called regular if each $|L_i|$ is a GC of K_i.

Received by the editors March 23, 1982 and, in revised form, April 26, 1982.

1980 Mathematics Subject Classification. Primary 54E35; Secondary 57A15.
Remark 1. Here for every \(c \in L_i \), we always identify \(c \) and \(c \times \{0\} \). In particular \(I^n = I^n \times \{0\} \subset I^{n+1} \).

Remark 2. Isbell \([2]\) gave a different, rather special definition for collapsible cubical complexes in the 2-dimensional case.

Lemma 1. Let \(S \) be a collapsible simplicial complex. Then \(S \) can be subdivided to a regular collapsible cubical complex \(K \) such that the polyhedron of any subcomplex of \(S \) is exactly the polyhedron of the corresponding subcomplex of \(K \).

Proof. Let the subcomplexes of \(S \), \(S_0, S_1, \ldots, S_n \), and the simplex \(\Delta_i, \tau_i \) be as above. Set \(K_0 = S_0 \). Suppose Lemma 1 is true for \(n = i \); we want to show it is true for \(S_{i+1} = S = S' \cup \{ \Delta_i, \tau_i \} \).

Write \(\partial \Delta_i = \Delta_i - \text{Int} \Delta_i \), by the hypothesis of induction, the polyhedron \(|S_i| \) is subdivided to a regular collapsible cubical complex \(M \), and \(\partial \Delta_i - \text{Int} \tau_i \) is a polyhedron of some subcomplex \(L \) of \(M \). Obviously, there exists a homeomorphism \(f \) of \((\partial \Delta_i - \text{Int} \tau_i) \times I \) onto \(\Delta_i \) such that \(f(x,0) = x \) for every \(x \in \partial \Delta_i - \text{Int} \tau_i \). By \(f \), one can obtain the cubical subdivision \(M' = M \cup L \times I \) of \(|S'| \).

Consider an arrangement \(c_1, c_2, \ldots, c_m \) of all cubes contained in \(L \) so that \(\dim c_i \leq \dim c_{i+1} \), for \(1 \leq i \leq m \). Set

\[
M_\alpha = M \cup \{ c_j \times I, c_j \times \{1\} \mid j = 1, 2, \ldots, \alpha \}, \quad \alpha = 0, 1, \ldots, m;
\]

then \(M = M_0 \subset M_1 \subset \cdots \subset M_{m-1} \subset M_m = M \cup L \times I \). Let \(Q_\alpha = c_\alpha \times \{0\} \cup \partial c_\alpha \times I \). It is easy to construct a homeomorphism \(f_\alpha \) of \(|Q_\alpha \times I| \) onto \(|c_\alpha \times I| \), \(\alpha = 1, 2, \ldots, m \), such that

\[
f_\alpha(x, t, 0) = \begin{cases} (x, 0) & \text{if } x \in c_\alpha, t = 0, \\ (x, t) & \text{if } x \in \partial c_\alpha, t \in I. \end{cases}
\]

Let \(P_0 = M_0, P_\alpha = P_{\alpha-1} \cup Q_\alpha \times I, \alpha = 1, \ldots, m \). By construction each \(P_\alpha \) is a cubical subdivision of \(M_\alpha \), and \(|Q_\alpha| \) is clearly a GC of \(P_{\alpha-1} \). So \(M \subset P_1 \subset P_2 \subset \cdots \subset P_m \) is a subsequence of regular cubical complexes. Since \(|P_m| \approx |M_m| \approx |S_{i+1}| \), \(P_m \) is as desired. \(\square \)

To study injective metrization we give some properties of GC.

Lemma 2. Suppose \(L \) is a subcomplex of a cubical complex \(K \), \(|L| \) is GC in \(K \), and projection

\[
P : |K| \cup |L \times I| \to |K|
\]

is given by \(p(x) = x \) for \(x \in |K| \) and \(p(y, t) = y \) for \((y, t) \in |L| \times I \). Let \(K' = K \cup L \times I \). If \(X \) is a GC of \(K' \), then

(i) \(p(X) \) is a GC of \(K \);

(ii) if \(p(X) \cap |L| = \emptyset, \ X = p(X) \);

(iii) if \(p(X) \cap |L| \neq \emptyset \) and \(X \cap |K| = \emptyset \), then there are \(s_0, t_0 \in I, s_0 < t_0 \), such that \(X = p(X) \times [s_0, t_0] \);

(iv) if \(p(X) \cap |L| \neq \emptyset \) and \(X \cap |K| \neq \emptyset \), i.e. \(X \cap |L| \neq \emptyset \), then there is \(t_0 \in I \) such that \(X = (X \cap |K|) \cup ((p(X) \cap |L|) \times [0, t_0]) \).
Proof. (i) If $|K| \cap X \neq \emptyset$, it is easy to see that $p(X) = |K| \cap X$ is a GC of K. If $|K| \cap X = \emptyset$, $p(X) \subset |L|$ and hence $p(X)$ is a GC of L. Since $|L|$ is a GC of K, so is $p(X)$.

(ii) If $p(X) \cap |L| = \emptyset$, $X \subset |K|$ and hence $X = p(X)$.

(iii) and (iv) follow easily from $X = (X \cap |K|) \cup (X \cap |L \times I|)$ and the following

Claim. If $p(X) \cap |L| = \emptyset$, then there are $s_0, t_0 \in I$ such that

$$X \cap (L \times I) = (p(X) \cap |L|) \times [s_0, t_0].$$

It suffices to show that if (x, s) and (y, t) in $|L| \times I$ are points in X, then (y, s) is also a point in X. In fact, take a broken line in X

$$[(x_0, s_0), (x_1, s_1), \ldots, (x_n, s_n)]$$

such that $(x, s) = (x_0, s_0)$, $(y, t) = (x_n, s_n)$, and $[(x_{i-1}, s_{i-1}), (x_i, s_i)]$ belong to a common cube, $i = 1, \ldots, n$. It successively follows from $(x_0, s_0) \in X$ that $(x, s), (x_s, s), \ldots, (x_n, s) = (y, s)$ are in X. \hfill \square

For $r > 0$, nonempty subsets Y of $|K|$ and X of $|K'|$, write

$$B(Y, r) = \{y \in |K| \mid d(y, Y) \leq r\},$$

$$B'(X, r) = \{x \in |K'| \mid d(x, X) \leq r\}.$$

Lemma 3. Let K and L be as in Lemma 2. Suppose that for every GC of K, Y, and $s > 0$, $B(Y, s)$ is a GC of K. Then for every GC of $K' = K \cup (L \times I)$, X, and $r > 0$, $B'(X, r)$ is a GC of K'.

Proof. Let X be a GC of K'. The proof conveniently splits into two cases:

Case 1. $X \cap |L| \neq \emptyset$. By (iv) of Lemma 2, there is $t_0 \in I$ such that

$$X = (X \cap |K|) \cup ((p(X) \cap |L|) \times [0, t_0]).$$

Let $B_1 = B'(X \cap |K|, r)$, $B_2 = B'((p(X) \cap |L|) \times [0, t_0], r)$, it is easy to see

$$B'(X, r) = B_1 \cup B_2$$

$$= (B_1 \cap |K|) \cup (B_1 \cap |L \times I|) \cup (B_2 \cap |K|) \cup (B_2 \cap |L \times I|).$$

It is obvious that

$$B_1 \cap |L \times I| \subset B_2 \cap |L \times I|,$$

$$B_1 \cap |K| = B(X \cap |K|, r),$$

and

$$B_2 \cap |L \times I| = (B(p(X), r) \cap |L|) \times [0, t_1],$$

where $t_1 = \min\{t_0 + r, 1\}$. Then $B'(X, r) = B(X \cap |K|, r) \cup ((B(p(X), r) \cap |L|) \times [0, t_1])$. Since $X \cap |K|$, $p(X)$ and $|L|$ are GC of K, by the hypothesis, $B(X \cap |K|, r)$ and $B(p(X), r) \cap |L|$ are GC of K. So $B'(X, r)$ is a GC of K. The proof of Case 1 is complete.

Case 2. $X \cap |L| = \emptyset$. Let $r_0 = d(X, |L|)$. One has

$$B'(X, r) = B'(B'(X, r_0), r - r_0)$$

whenever $r_0 \leq r$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Case 2(a). \(X \cap |K| = \emptyset \). By (iii) of Lemma 2, there are \(s_0, t_0 \in I \) such that \(X = p(X) \times [s_0, t_0] \). If \(r_0 \leq r \), let \(t_2 = \min\{1, t_0 + r_0\} \). Since \(B(p(X), r_0) \) is a GC of \(K \), \(B'(X, r_0) = (B(p(X), r_0) \cap |L|) \times [0, t_2] \) is a GC of \(K \). Now \(B'(X, r_0) \cap |L| \neq \emptyset \), by Case 1, \(B'(X, r) \) is a GC of \(K' \). If \(r_0 > r \), similarly,

\[
B'(X, r) = (B(p(X), r) \cap |L|) \times [s_0 - r, t_1]
\]

is a GC of \(K' \).

Case 2(b). \(X \cap |K| \neq \emptyset \), then \(X \subseteq |K| \). If \(r_0 \leq r \), \(B'(X, r_0) = B(X, r_0) \) has nonempty intersection with \(|L| \). By Case 1, \(B'(X, r) \) is a GC of \(K' \). If \(r_0 > r \), \(B'(X, r) = B(X, r) \) is a GC of \(K' \). \(\square \)

Let \(K \) be a cubical complex. \(K \) is said to have property (P) if any collection of GC of \(K \), \(\{X_{\alpha} | \alpha \in A\} \), such that every couple of its members intersect, has a common point.

Lemma 4. Let \(K \) and \(L \) be as in Lemma 2. If \(K \) has the property (P), then \(K' = K \cup L \times I \) also has the property (P).

Proof. Let \(\{X_{\alpha} | \alpha \in A\} \) be a collection of GC of \(K' \) such that for each \(\alpha \) and \(\beta \) in \(A \), \(X_{\alpha} \cap X_{\beta} \neq \emptyset \). Then \(\{p(X_{\alpha})\} \) pairwise intersect in \(|K| \), and hence \(\bigcap_{\alpha} p(X_{\alpha}) \neq \emptyset \). We want to show \(\bigcap_{\alpha \in A} X_{\alpha} \neq \emptyset \).

If \(X_{\alpha} \cap |K| \neq \emptyset \) for each \(\alpha \in A \), then

\[
\left(\bigcap_{\alpha} X_{\alpha} \right) \cap |K| = \left(\bigcap_{\alpha} \left(X_{\alpha} \cap |K| \right) \right) = \bigcap_{\alpha} p(X_{\alpha}) \neq \emptyset .
\]

Hence \(\bigcap_{\alpha} X_{\alpha} \neq \emptyset \).

If \(X_{\alpha_0} \cap |K| \neq \emptyset \) for some \(\alpha_0 \in A \), then \(X_{\alpha_0} \subseteq |L| \times I \), and \(p(X_{\alpha}) \cap |L| \neq \emptyset \) for each \(\alpha \in A \). By (iii) and (iv) of Lemma 3, for each \(\alpha \in A \), there are \(s_\alpha, t_\alpha \) such that \(0 \leq s_\alpha \leq t_\alpha \leq 1 \) and

\[
X_{\alpha} = (X_{\alpha} \cap |K|) \cup \left(\left(p(X_{\alpha}) \cap |L| \right) \times [s_\alpha, t_\alpha] \right).
\]

Set \(s = \sup\{s_\alpha | \alpha \in A\} \), \(t = \inf\{t_\alpha | \alpha \in A\} \). One has \(s \leq t \). In fact, if not, there are \(\alpha_1, \alpha_2 \in A \) such that \(s_{\alpha_1} > t_{\alpha_2} \geq 0 \). Then \(X_{\alpha_1} \cap |K| = \emptyset \). Obviously \(X_{\alpha_1} = (p(X_{\alpha_1}) \cap |L|) \times [s_{\alpha_1}, t_{\alpha_1}] \) does not intersect with \(X_{\alpha_2} = (X_{\alpha_2} \cap |K|) \cup \left(\left(p(X_{\alpha_2}) \cap |L| \right) \times [s_{\alpha_2}, t_{\alpha_2}] \right) \). Contradiction. Then \(\bigcap_{\alpha} X_{\alpha} = \bigcap_{\alpha} p(X_{\alpha}) \times [s, t] \neq \emptyset \). \(\square \)

We have to use an important property of injective metric spaces. That is

Lemma 5. Let \(X \) be a metric space. Then \(X \) is injective if and only if \(X \) is convex and any collection of solid spheres in pairwise intersection in \(X \) has a common point.

For proof of Lemma 5 see [1].

Now we can obtain our main conclusion.

Theorem. Let \(S \) be a finite collapsible simplicial complex. Then there is a distance function in \(S \) such that \(S \) becomes an injective metric space.

Proof. By Lemma 1, \(S \) can be subdivided to a regular collapsible cubical complex \(K \) with its natural metric. Let the sequence of subcomplexes of \(K \),

\[
K_0 \subset K_1 \subset \cdots \subset K_n = K,
\]

and \(L_i \subset K_i, \ i = 0, 1, \ldots, n, \) be as in Definition 2. Because \(|K| \) is convex, using Lemma 5, we need only show that every solid sphere in \(|K|, B(x, r) = \{ y \in |K| \mid d(x, y) \leq r \} \) is a GC of \(K \), and that \(K \) has the property (P).

The proof will be by induction on \(n \). If \(n = 0, K_0 = \) one point, it holds obviously. Suppose it holds for \(n = j \geq 0 \). Then the correctness for \(K_{j+1} = K = K' \cup L_j \times I \) easily follows from Lemma 3 and Lemma 4. \(\square \)

The authors are indebted to Professor J. R. Isbell for guidance.

BIBLIOGRAPHY

Department of Mathematics, Guangxi University, Nanning, China

Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14214