A generalization of the Poincaré-Birkhoff theorem

Author:
Wei Yue Ding

Journal:
Proc. Amer. Math. Soc. **88** (1983), 341-346

MSC:
Primary 54H20; Secondary 54H25, 58F12

DOI:
https://doi.org/10.1090/S0002-9939-1983-0695272-2

MathSciNet review:
695272

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A generalized form of the Poincaré-Birkhoff theorem is proved. The generalization is useful for the further applications of this famous fixed point theorem.

**[1]**G. D. Birkhoff,*Proof of Poincaré's geometric theorem*, Trans. Amer. Math. Soc.**14**(1913), 14-22. MR**1500933****[2]**G. D. Birkhoff,*Dynamical systems*, Amer. Math. Soc. Colloq. Publ., vol. 27, Amer. Math. Soc. Providence, R.I., 1927; revised 1966; reprinted 1979. MR**0209095 (35:1)****[3]**M. Morse,*George David Birkhoff and his mathematical work*, Bull. Amer. Math. Soc.**52**(1946), 357-391. MR**0016341 (8:3f)****[4]**H. Jacobowitz,*Periodic solutions of**via the Poincaré-Birkhoff Theorem*, J. Differential Equations**20**(1976), 37-52; and*Corrigendum: The existence of the second fixed point: A correction to "Periodic solutions of**via the Poincaré-Birkhoff Theorem*", J. Differential Equations**25**(1977), 148-149. MR**0393673 (52:14482)****[5]**T. R. Ding,*An infinite class of periodic solutions of periodically perturbed Duffing equations at resonance*, Proc. Amer. Math. Soc.**86**(1982), 47-54. MR**663864 (83j:34041)****[6]**W. Y. Ding,*Fixed points of twist mappings and periodic solutions of ordinary differential equations*, Acta Math. Sinica**25**, 227-235. (Chinese) MR**677834 (84d:58061)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54H20,
54H25,
58F12

Retrieve articles in all journals with MSC: 54H20, 54H25, 58F12

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0695272-2

Article copyright:
© Copyright 1983
American Mathematical Society