ERRATUM TO “UNIQUENESS AND QUASI-MEASURES ON THE GROUP OF INTEGERS OF A p-SERIES FIELD”

W. R. WADE AND K. YONEDA

$$|\mu(G)| \leq \varepsilon + Ae$$

is obtained. We then claim that $\mu(G) = 0$ by letting $\varepsilon \to 0$. However, A depends upon a certain point \bar{x}_0, obtained by intersecting a sequence of sets which were chosen with respect to the given $\varepsilon > 0$. In particular, A is a function of ε and we cannot be sure that $A\varepsilon \to 0$ as $\varepsilon \to 0$.

This error was pointed out by Bruce Aubertin, a student of J. Coury and J. Fournier of the University of British Columbia. He also suggests the following patch.

Inequality (12) gave up too much too soon. Indeed, the choice of ε_j’s leads us to a stronger inequality

$$(12.5) \quad |\mu(G)| \leq \varepsilon(1 - 2^{-j}) + \varepsilon'p^{N_1 + \cdots + N_j}|\mu(I(k_j, N_1 + \cdots + N_j))|.$$

Proceeding with the choice of \bar{x}_0 as before, and using (7) with (12.5) we obtain

$$|\mu(G)| \leq \varepsilon + \varepsilon'|S_{p^{N_1 + \cdots + N_j}}(\bar{x}_0)|.$$

Hence the estimate at the bottom of p. 205 becomes

$$|\mu(G)| \leq \varepsilon + \varepsilon'A.$$

Now let $j \to \infty$ and $\varepsilon \to 0$ to conclude that $\mu(G) = 0$, as required.

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916
Department of Mathematics, University of Osaka Prefecture, Sakai, Osaka, Japan

Received by the editors January 10, 1983.
1980 Mathematics Subject Classification. Primary 42C10, 42C25; Secondary 43A75, 12B99.

©1983 American Mathematical Society
0002-9939/83/0000-1334/$01.25