Gradient method for nondensely defined closed unbounded linear operators

Authors:
Sung J. Lee and M. Zuhair Nashed

Journal:
Proc. Amer. Math. Soc. **88** (1983), 429-435

MSC:
Primary 47A50; Secondary 65J10

MathSciNet review:
699408

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The paper establishes the convergence of the steepest descent method for least-squares solutions of operator equations in Hilbert spaces for any (nondensely defined, unbounded) closed linear operator with closed range. This is done by using a graph topology, an explicit graph topology adjoint, and existing theory of steepest descent for bounded linear operators.

**[1]**Richard Arens,*Operational calculus of linear relations*, Pacific J. Math.**11**(1961), 9–23. MR**0123188****[2]**Earl A. Coddington and Aalt Dijksma,*Adjoint subspaces in Banach spaces, with applications to ordinary differential subspaces*, Ann. Mat. Pura Appl. (4)**118**(1978), 1–118. MR**533601**, 10.1007/BF02415124**[3]**Magnus R. Hestenes,*Relative self-adjoint operators in Hilbert space*, Pacific J. Math.**11**(1961), 1315–1357. MR**0136996****[4]**J. W. Jerome and L. L. Schumaker,*On 𝐿𝑔-splines*, J. Approximation Theory**2**(1969), 29–49. MR**0241864****[5]**W. J. Kammerer and M. Z. Nashed,*Steepest descent for singular linear operators with nonclosed range.*, Applicable Anal.**1**(1971), no. 2, 143–159. MR**0290134****[6]**W. J. Kammerer and M. Z. Nashed,*Iterative methods for best approximate solutions of linear integral equations of the first and second kinds*, J. Math. Anal. Appl.**40**(1972), 547–573. MR**0320677****[7]**L. V. Kantorovich and G. P. Akilov,*Functional analysis in normed spaces*, Translated from the Russian by D. E. Brown. Edited by A. P. Robertson. International Series of Monographs in Pure and Applied Mathematics, Vol. 46, The Macmillan Co., New York, 1964. MR**0213845****[8]**Lawrence J. Lardy,*A series representation for the generalized inverse of a closed linear operator*, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8)**58**(1975), no. 2, 152–157 (English, with Italian summary). MR**0473881****[9]**Sung J. Lee,*Boundary conditions for linear manifolds. I*, J. Math. Anal. Appl.**73**(1980), no. 2, 336–380. MR**563989**, 10.1016/0022-247X(80)90284-X**[10]**S. J. Lee and M. Z. Nashed,*Operator parts and generalized inverses of multi-valued operators, with applications to ordinary differential subspaces*(to appear).**[11]**-,*Least-squares solutions of multi-valued linear operators*, J. Approx. Theory (to appear).**[12]**John Locker,*Weak steepest descent for linear boundary value problems*, Indiana Univ. Math. J.**25**(1976), no. 6, 525–530. MR**0418456****[13]**Th. R. Lucas,*A generalization of 𝐿-splines*, Numer. Math.**15**(1970), 359–370. MR**0269080****[14]**S. F. McCormick and G. H. Rodrigue,*A uniform approach to gradient methods for linear operator equations*, J. Math. Anal. Appl.**49**(1975), 275–285. MR**0377564****[15]**M. Z. Nashed,*Steepest descent for singular linear operator equations*, SIAM J. Numer. Anal.**7**(1970), 358–362. MR**0269093****[16]**M. Zuhair Nashed,*Perturbations and approximations for generalized inverses and linear operator equations*, Generalized inverses and applications (Proc. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1973) Academic Press, New York, 1976, pp. 325–396. Publ. Math. Res. Center Univ. Wisconsin, No. 32. MR**0500249****[17]**W. V. Petryshyn,*Direct and iterative methods for the solution of linear operator equations in Hilbert space*, Trans. Amer. Math. Soc.**105**(1962), 136–175. MR**0145651**, 10.1090/S0002-9947-1962-0145651-8**[18]**W. V. Petryshyn,*On generalized inverses and on the uniform convergence of (𝐼-𝛽𝐾)ⁿ with application to iterative methods*, J. Math. Anal. Appl.**18**(1967), 417–439. MR**0208381**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47A50,
65J10

Retrieve articles in all journals with MSC: 47A50, 65J10

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1983-0699408-9

Keywords:
Graph topology,
graph topology adjoint,
operator part,
gradient method,
steepest descent,
unbounded linear operator,
normal equations,
iterative methods,
generalized inverse of subspace

Article copyright:
© Copyright 1983
American Mathematical Society