Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Geometric conditions for interpolation


Authors: C. L. Belna, S. A. Obaid and D. C. Rung
Journal: Proc. Amer. Math. Soc. 88 (1983), 469-475
MSC: Primary 30E05; Secondary 30D55
DOI: https://doi.org/10.1090/S0002-9939-1983-0699416-8
MathSciNet review: 699416
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \left\{ {{z_n}} \right\}$ be a sequence lying in either the upper half-plane or the unit disc in the complex plane. If $ \left\{ {{z_n}} \right\}$ is a separated sequence we give a simple geometric condition that implies the sequence is an interpolating sequence for the algebra of bounded holomorphic functions. This result contains most of the known results of this type.


References [Enhancements On Off] (What's this?)

  • [1] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930. MR 0117349 (22:8129)
  • [2] J. Garnett, Interpolating sequences for bounded harmonic functions, Indiana Univ. Math. J. 21 (1971), 187-192. MR 0284589 (44:1814)
  • [3] -, Bounded analytic functions, Academic Press, New York, 1981. MR 628971 (83g:30037)
  • [4] E. A. Gerber and M. L. Weiss, Interpolation, trivial and non-trivial homomorphisms in $ {H^\infty }$, J. Math. Soc. Japan 34 (1982), 173-185. MR 639811 (83b:46072)
  • [5] W. K. Hayman, Interpolation by bounded functions, Ann. Inst. Fourier (Grenoble) 8 (1959), 277-290. MR 0117348 (22:8128)
  • [6] P. Koosis, Introduction to $ {H^p}$ spaces, London Math. Soc. Lecture Note Ser. (2), Vol. 40, Cambridge Univ. Press, Cambridge, 1980. MR 565451 (81c:30062)
  • [7] D. J. Newman, Interpolation in $ {H^\infty }$, Trans. Amer. Math. Soc. 92 (1959), 501-507. MR 0117350 (22:8130)
  • [8] M. L. Weiss, Some $ {H^\infty }$-interpolating sequences and the behavior of certain of their Blaschke products, Trans. Amer. Math. Soc. 209 (1975), 211-223. MR 0372219 (51:8435)
  • [9] D. H. Wortman, Interpolating sequences on convex curves in the open unit disc, Proc. Amer. Math. Soc. 48 (1975), 157-164. MR 0361092 (50:13538)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30E05, 30D55

Retrieve articles in all journals with MSC: 30E05, 30D55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0699416-8
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society