Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The Kobayashi indicatrix at the center of a circular domain


Author: Theodore J. Barth
Journal: Proc. Amer. Math. Soc. 88 (1983), 527-530
MSC: Primary 32F15; Secondary 32A07, 32H15
MathSciNet review: 699426
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The indicatrix of the Kobayashi infinitesimal metric at the center of a pseudoconvex complete circular domain coincides with this domain. It follows that a nonconvex complete circular domain cannot be biholomorphic to any convex domain. An example shows that a bounded pseudoconvex complete circular domain in $ {{\mathbf{C}}^2}$ need not be taut.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32F15, 32A07, 32H15

Retrieve articles in all journals with MSC: 32F15, 32A07, 32H15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1983-0699426-0
PII: S 0002-9939(1983)0699426-0
Keywords: Kobayashi metric, complete circular domain, taut domain, pseudoconvex domain, convex domain
Article copyright: © Copyright 1983 American Mathematical Society