On the product of stable diffeomorphisms

Author:
Atsuro Sannami

Journal:
Proc. Amer. Math. Soc. **88** (1983), 545-549

MSC:
Primary 58F10; Secondary 58F15

DOI:
https://doi.org/10.1090/S0002-9939-1983-0699431-4

MathSciNet review:
699431

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that statements (a)-(c) are equivalent, (a) Structural stability conjecture. (b) If diffeomorphisms and are both structurally stable, then so is . (c) If a diffeomorphism is structurally stable, then every diffeomorphism in a neighborhood of has only hyperbolic periodic points.

**[1]**Shan Tao Liao,*On the stability conjecture*, Chinese Ann. Math.**1**(1980), no. 1, 9–30 (English, with Chinese summary). MR**591229****[2]**Ricardo Mañé,*Expansive diffeomorphisms*, Dynamical systems—Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Springer, Berlin, 1975, pp. 162–174. Lecture Notes in Math., Vol. 468. MR**0650658****[3]**Ricardo Mañé,*Contributions to the stability conjecture*, Topology**17**(1978), no. 4, 383–396. MR**516217**, https://doi.org/10.1016/0040-9383(78)90005-8**[4]**Zbigniew Nitecki,*Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms*, The M.I.T. Press, Cambridge, Mass.-London, 1971. MR**0649788****[5]**J. Palis,*A note on Ω-stability*, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 221–222. MR**0270387****[6]**J. Palis and S. Smale,*Structural stability theorems*, Global Analysis, Proc. Sympos. Pure Math., vol.**[7]**V. A. Pliss,*A hypothesis due to Smale*, Differential Equations**8**(1972), 203-214.**[8]**-,*The location of separatrices of periodic saddle-point motion of systems of second-order differential equations*, Differential Equations**7**(1971), 906-927.**[9]**J. W. Robbin,*A structural stability theorem*, Ann. of Math. (2)**94**(1971), 447–493. MR**0287580**, https://doi.org/10.2307/1970766**[10]**R. Clark Robinson,*𝐶^{𝑟} structural stability implies Kupka-Smale*, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 443–449. MR**0334282****[11]**-,*Structural stability of**diffeomorphisms*, J. Differential Equations**22**(1976), 28-73.**[12]**Atsuro Sannami,*The stability theorems for discrete dynamical systems on two-dimensional manifolds*, Proc. Japan Acad. Ser. A Math. Sci.**57**(1981), no. 8, 403–407. MR**635403****[13]**S. Smale,*The Ω-stability theorem*, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, r.I., 1970, pp. 289–297. MR**0271971**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58F10,
58F15

Retrieve articles in all journals with MSC: 58F10, 58F15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0699431-4

Article copyright:
© Copyright 1983
American Mathematical Society