Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Infinite-dimensional Jacobi matrices associated with Julia sets


Authors: M. F. Barnsley, J. S. Geronimo and A. N. Harrington
Journal: Proc. Amer. Math. Soc. 88 (1983), 625-630
MSC: Primary 30D05; Secondary 33A65, 58F11
DOI: https://doi.org/10.1090/S0002-9939-1983-0702288-6
Erratum: Proc. Amer. Math. Soc. 92 (1984), 156.
MathSciNet review: 702288
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ B$ be the Julia set associated with the polynomial $ Tz = {z^N} + {k_1}{z^{N - 1}} + \cdots + {k_N}$, and let $ \mu $ be the balanced $ T$-invariant measure on $ B$. Assuming $ B$ is totally real, we give relations among the entries in the infinite-dimensional Jacobi matrix $ J$ whose spectral measure is $ \mu $. The specific example $ Tz = {z^3} - \lambda z$ is given, and some of the asymptotic properties of the entries in $ J$ are presented.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Barnsley, J. S. Geronimo and A. N. Harrington, Orthogonal polynomials associated with invariant measures on Julia sets, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 381-384. MR 663789 (84a:42031)
  • [2] -, On the invariant sets of a family of quadratic maps, Comm. Math. Phys. (to appear). MR 702565 (85g:58055)
  • [3] -, Geometry, electrostatic measure, and orthogonal polynomials on Julia sets for polynomials, Ergod. Th. & Dynam. Sys. (submitted).
  • [4] D. Bessis, M. L. Mehta and P. Moussa, Orthogonal polynomials on a family of Cantor sets and the problem of iterations of quadratic mappings, Lett. Math. Phys. 6 (1982), 123-140. MR 651127 (83g:58038)
  • [5] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144. MR 0194595 (33:2805)
  • [6] P. Fatou, Sur les equations fonctionelles, Bull. Soc. Math. France 47 (1919), 161-271. MR 1504787
  • [7] -, Sur les equations fonctionelles, Bull. Soc. Math. France 48 (1920), 33-94, 208-314. MR 1504792
  • [8] G. Julia, Mémoire sur l'iteration des fonctions rationelles, J. Math. Pures Appl. 1 (1918), 47-245.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D05, 33A65, 58F11

Retrieve articles in all journals with MSC: 30D05, 33A65, 58F11


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0702288-6
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society