INFINITE-DIMENSIONAL JACOBI MATRICES ASSOCIATED WITH JULIA SETS

M. F. BARNSLEY1, J. S. GERÓNIMO2 AND A. N. HARRINGTON

Abstract. Let B be the Julia set associated with the polynomial \(T_z = z^N + k_1z^{N-1} + \cdots + k_N \), and let \(\mu \) be the balanced \(T \)-invariant measure on \(B \). Assuming \(B \) is totally real, we give relations among the entries in the infinite-dimensional Jacobi matrix \(J \) whose spectral measure is \(\mu \). The specific example \(T_z = z^3 - \lambda z \) is given, and some of the asymptotic properties of the entries in \(J \) are presented.

1. Introduction. Let \(C \) be the complex plane and \(T: C \to C \) a polynomial, \(T(z) = z^N + k_1z^{N-1} + \cdots + k_N \) where \(N \geq 2 \) and each \(k_i \in C \). Define \(T^0(z) = z \) and \(T^n(z) = T \circ T^{n-1}(z) \) for \(n \in \{1, 2, 3, \ldots\} \). A fundamental role in the study of the sequence of iterates \(\{T^n(z)\} \) is played by the Julia set \(B \). \(B \) is the set of points \(z \in C \) where \(\{T^n(z)\} \) is not normal in the sense of Montel, and a general exposition can be found in Julia [8], Fatou [6, 7] and Brolin [5]. It has positive logarithmic capacity, and on it can be placed an equilibrium charge distribution \(\mu \). This provides a measure on \(B \) which is invariant under \(T: B \to B \) and is such that the system \((B, \mu, T) \) is strongly mixing.

In an earlier paper [1] we investigated general properties of \(\mu \) and its associated orthogonal monic polynomials. Here we restrict attention to the case where \(B \) is a compact subset of the real line, and the orthogonal polynomials satisfy a three-term recurrence formula. In [2] we proved, for \(N = 2 \), relationships connecting the coefficients, which permit all the polynomials to be calculated in a recursive fashion. Here we generalized the relationships so that the orthogonal polynomials of all degrees can be obtained for any \(T \) for which \(B \) is a compact subset of the real line (Theorem 1). The results are illustrated for \(T(z) = z^3 - \lambda z \) with \(\lambda \geq 3 \). When \(\lambda = 3 \) the polynomials are those of Chebychev, shifted to the interval \([-2, 2]\), and when \(\lambda > 3 \) they become a generalization whose support is a Cantor set. In this case we establish that both the coefficients (Theorem 2) and the associated Jacobi matrix \(J \) (Theorem 3) display an asymptotic self-reproducing property.

2. Preliminaries.

Definition 1. \(\mu \) is a balanced \(T \)-invariant Borel measure on \(B \) if \(\mu \) is a probability measure supported on \(B \), such that for any complete assignment of branches of \(T^{-1} \), namely \(T_j^{-1} \) for \(j \in \{1, 2, 3, \ldots, N\} \), \(\mu(T_j^{-1}(S)) = \mu(S)/N \) for each Borel set \(S \).

Received by the editors March 23, 1982.
1980 Mathematics Subject Classification. Primary 30C10; Secondary 47B25.
1Supported by NSF grant MCS-8104862.
2Supported by NSF grant MCS-8002731.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
There is only one balanced T-invariant measure on B, and the equilibrium measure of Brolin is balanced [3]. If μ is balanced and $f \in L^1(B, \mu)$, then [1]

$\langle z^j f(T(z)) \rangle = S_j \langle f(z) \rangle / N$ for $j \in \{1, 2, \ldots, N - 1\},$

where $\langle f(z) \rangle = \int_B f(z) \, d\mu(z)$. Here

$$S_j = -j k_j - \sum_{l=1}^{j-1} k_l S_l$$

with k_l the coefficient of Z^{N-l} in T for $l \in \{1, 2, \ldots, N\}$.

In [1] we showed that the sequence of monic polynomials $\{P_n(z)\}_{n=0}^{\infty}$, orthogonal with respect to μ according to $\langle P_l(z) P_m(z) \rangle = 0$ for $l \neq m$, obey the following relations:

(a) $P_1(z) = z + k_1/N$,
(b) $P_{mN}(z) = P_1(T(z))$ for $l \in \{0, 1, 2, \ldots\}$,
(c) $P_{N}(z) = T'(z) + k_1/N$ for $l \in \{0, 1, 2, \ldots\}$.

3. Results. When B is a subset of the real line the orthonormal polynomials with respect to μ obey (b) and the following relation.

$$a(n + 1) p_{n+1}(x) + b(n) p_n(x) + a(n) p_{n-1}(x) = x p_n(x), \quad n \in \{0, 1, 2, \ldots\},$$

where

$$a(n) = \langle x p_n p_{n-1} \rangle \quad \text{for} \ n \in \{1, 2, 3, \ldots\},$$

and

$$b(n) = \langle x p_n^2 \rangle \quad \text{for} \ n \in \{0, 1, 2, \ldots\}.$$

The recurrence formula (3) can be recast as the formal operator equation

$$J \psi = x \psi$$

where

$$J = \begin{bmatrix} b(0) & a(1) & 0 & \cdots \\ a(1) & b(1) & a(2) & \cdots \\ 0 & a(2) & b(2) & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

and $\psi^T = (p_0, p_1, p_2, \ldots)$. J can be treated as a selfadjoint operator acting on l_2. In [2] we showed that the coefficients in J obey certain recurrence formulas when T is quadratic; see also [4]. We generalize that result here.

Proceeding formally we have

$$J^l \psi = x^l \psi \quad \text{for} \ l \in \{0, 1, 2, \ldots\},$$

which leads to

$$\langle p_{mN} J^l \psi \varepsilon_{nN+1} \rangle = \langle x^l p_{mN}^2 \rangle$$
for \(n \in \{0, 1, 2, \ldots\} \), where \(\hat{e}_k \) is the \(l_2 \) vector with one in the \(k \)th place and zeros elsewhere. Observe also that the invariance of \(\mu \) together with (b) implies

\[
(8) \quad a(n) = \langle x^m p_{nN} p_{nN-N} \rangle = a(nN) a(nN-1) \cdots a(nN-N+1), \quad n \in \{1, 2, 3, \ldots\}.
\]

Theorem 1. Let \(a(n) = b(n-1) = 0 \) for \(n \leq 0 \). Then all of the coefficients in \(J \) can be calculated recursively using (8) and (7) with \(l \in \{1, 2, \ldots, 2N-1\} \).

The proof will require two lemmas.

Lemma 1. Let \(\{p_n\}_{n=0}^{\infty} \) be the orthonormal polynomials associated with the balanced \(T \)-invariant \(\mu \). Then

\[
(9) \quad \langle x^l p_{nN}^2 \rangle = D(l) \quad \text{for} \quad l \in \{1, 2, \ldots, 2N-1\},
\]

where

\[
D(l) = \begin{cases}
N^{-1} S_l & \text{when} \quad l \in \{1, 2, \ldots, N-1\}, \\
N^{-1} S_{l-N} b(n) - \sum_{j=1}^{N} k_j D(l-j) & \text{when} \quad l \in \{N, \ldots, 2N-1\},
\end{cases}
\]

where \(S_0 = N \) and \(S_l \) is otherwise as defined in (2).

Proof of Lemma 1. For \(l \in \{1, 2, \ldots, N-1\} \) the result follows from (1) with \(f = p_{nN}^2 \). For \(l = N + m \),

\[
(10) \quad x^{N+m} = x^m T(x) - \sum_{j=1}^{N} k_j x^{m+N-j}.
\]

The lemma now follows on multiplying through by \(p_{nN}^2 \), integrating, and using the fact that

\[
(11) \quad \langle x^m T(x) p_{nN}^2 \rangle = N^{-1} S_m \langle x p_{nN}^2 \rangle = N^{-1} S_m b(n)
\]

for \(m \in \{0, 1, 2, \ldots, N-1\} \).

One can now see that the dependence on \(n \) on the right-hand side enters only through \(b(n) \).

Lemma 2. Let \(C_l(nN + 1, nN + 1) \) denote the \((nN + 1, nN + 1) \) entry in \(J^l \). When \(l = 2k \), the coefficient in \(C^{2k}(nN + 1, nN + 1) \) with the highest index is \(a(nN + k) \) and all other coefficients have lower indices. When \(l = 2k + 1 \), the coefficients in \(C^{2k+1}(nN + 1, nN + 1) \) with the highest index are \(a(nN + k) \) and \(b(nN + k) \); all other coefficients have lower indices.

Proof of Lemma 2. We begin by computing \(C_l(nN + 1, nN + 1) \) with the aid of (7). Thus

\[
(12) \quad C_l(nN + 1, nN + 1) = a(nN) C^{l-1}(nN, nN + 1) + b(nN) C^{l-1}(nN + 1, nN + 1) + a(nN + 1) C^{l-1}(nN + 2, nN + 1), \quad l \in \{1, 2, \ldots, 2N-1\},
\]

with

\[
(13) \quad C^1(i, j) = a(i-1) \delta_{i-1,j} + b(i-1) \delta_{i,j} + a(i) \delta_{i+1,j},
\]
and

\[C_m(i, j) = a(i - 1)C_{m-1}(i - 1, j)b(i - 1) + C_{m-1}(i, j) + a(i)C_{m-1}(i + 1, j). \]

It follows immediately from (14) that \(C_m(i, j) = 0 \) if \(|i - j| > m\). From (13) and (14) we find

\[C^0(nN + 1, nN + 1) = b(nN), \]

and

\[C^2(nN + 1, nN + 1) = a(nN)^2 + b(nN)^2 + a(nN) + 1)^2. \]

Let us now assume that the lemma holds up to \(2k - 1 \). Then

\[C^{2k}(nN + 1, nN + 1) = a(nN + 1)C^{2k-1}(nN + 2, nN + 1) + b(nN)C^{2k-1}(nN + 1, nN + 1). \]

One can easily show by induction that if \(a(l) \) or \(b(n) \) appear in \(C_m(i, j) \) then \(l \leq (m + i + j)/2 \) and \(n \leq (m + i + j - 1)/2 \). Consequently one need only consider the first term on the right-hand side of (17). Therefore

\[C^{2k}(nN + 1, nN + 1) = \left[\prod_{l=1}^{k} a(nN + l) \right] C^k(nN + k + 1, nN + 1) \]

\[+ \{ \text{terms containing only coefficients with indices lower than } nN + k \}. \]

But from (14) we have

\[C^k(nN + k + 1, nN + 1) = \prod_{l=1}^{k} a(nN + l), \]

whence

\[C^{2k}(nN + 1, nN + 1) = \left[\prod_{l=1}^{k} a(nN + l) \right]^2 \]

\[+ \{ \text{terms involving only coefficients with indices lower than } nN + k \}. \]

Likewise,

\[C^{2k+1}(nN + 1, nN + 1) = \left[\prod_{l=1}^{k} a(nN + l) \right] C^{k+1}(nN + k + 1, nN + 1) \]

\[+ \{ \text{terms involving only } a(l) \text{ and } b(l - 1) \text{ with } l < nN + k \}, \]

and (14) now yields

\[C^{2k+1}(nN + 1, nN + 1) = \left[\prod_{l=1}^{k} a(nN + l) \right]^2 b(nN + k) \]

\[+ \{ \text{terms involving only } a(l) \text{ and } b(l - 1) \text{ with } l < nN + k \}. \]

This completes the proof of Lemma 2.
Proof of Theorem 1. If one is given \(a(i) \) and \(b(i) \) for \(i < Nn \), then Lemmas 1 and 2, together with (8), provide \(2N \) relations from which one can explicitly calculate \(a(nN + l) \) and \(b(nN + l) \) for \(l \in \{0, 1, 2, \ldots, N - 1 \} \). This completes the proof.

Corollary 1. If \(B \) is an interval on the real line then \(B = [a, b] \) with \(a = -k_1/N - 2 \) and \(b = -k_1/N + 2 \). Moreover, \(d\mu = dx/\pi((b - x)(x - a))^{1/2} \), and \(T(x) + k_1/N \) is the monic Chebychev polynomial of degree \(N \) on \(B \).

Proof. If \(B \) is an interval then the electrical equilibrium distribution \(\mu \) is just the measure associated with the Chebychev polynomials of the first kind. Since all the off-diagonal entries in \(J \) except for \(a(1) \) are the same, (6) implies these must equal unity. Likewise, all diagonal entries in \(J \) must be equal to \(-k_1/N\), and the proof is completed.

4. An example. We examine the case \(T(z) = z^3 - \lambda z \) with \(\lambda \gg 3 \), for which Theorem 1 yields

\[
\begin{align*}
(22) & \quad b(n) = 0, \\
(23) & \quad a(3n + 1)^2 = 2\lambda/3 - a(3n)^2, \\
(24) & \quad a(3n + 2)^2 = \lambda/3
\end{align*}
\]

and

\[
\begin{align*}
(25) & \quad a(3n)a(3n - 1)a(3n - 2) = a(n).
\end{align*}
\]

From these relations and Corollary 1 it is easy to see that \(B = [-2, 2] \) when \(\lambda = 3 \). For \(\lambda > 3 \) it follows from [5] that \(B \) is a totally disconnected perfect subset of the real line, with Lebesgue measure zero. As such, it is a generalized Cantor set.

Lemma 3. For \(\lambda > 3 \) and \(n \in \{1, 2, 3, \ldots\} \), \(0 < a(3n) < 1 \) and \(a(3n) < a(n) \).

Proof. From (23) and (25) it follows that \(a(1)^2 = 2\lambda/3 \) and \(a(3)^2 = 3/\lambda \). Furthermore, from (23)–(25) we have

\[
(26) \quad a(3n)^2 = \frac{3}{\lambda} \frac{a(n)^2}{2\lambda/3 - a(3n - 3)^2},
\]

and the lemma follows by induction and equations (23) and (24).

Theorem 2. For \(\lambda > 3 \) and \(m, s \in \{0, 1, 2, \ldots\} \),

\[
\text{Lim}_{n \to \infty} a(m3^n + s)^2 = a(s)^2.
\]

Proof. First consider the case \(s = 0 \). Then from (26)

\[
\begin{align*}
a(m3^n)^2 & = \frac{(3/\lambda)a(m3^{n-1})^2}{(2\lambda/3 - a(m3^n - 3)^2)} \\
& < \frac{(3/\lambda)a(m3^{n-1})^2}{(2\lambda/3 - 1)} < \frac{(3/\lambda)^n(2\lambda/3 - 1)^n a(m)^2}.
\end{align*}
\]

Because \(3/\lambda < 1 \), and \(2\lambda/3 - 1 > 1 \), for \(\lambda > 3 \) we now have \(\text{Lim}_{n \to \infty} a(m3^n)^2 = 0 \).

The proof is now completed by induction on \(m \) for \(s = 3m + k \), \(k \in \{0, 1, 2, \ldots\} \), using (23)–(25).
Results similar to Lemma 3 and Theorem 2 are valid for $T(z) = (z - \lambda)^2$ with $\lambda \geq 2$ and follow from [2]; see, for example, [4].

Now consider the sequence of infinite-dimensional Jacobi matrices $\{J^{(m\lambda^n)}\}$ defined for $m, n \in \{0, 1, 2, \ldots\}$ by

$$J^{(m\lambda^n)} = \begin{pmatrix}
0 & a(m\lambda^n + 1) & 0 \\
0 & a(m\lambda^n + 1) & a(m\lambda^n + 2) \\
a(m\lambda^n + 1) & 0 & a(m\lambda^n + 2) \\
a(m\lambda^n + 2) & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}.$$

Here the coefficients $a(i)$ are those determined by (23)–(25). Since the support B of the spectral measure of J is compact, it also is for each $J^{(m\lambda^n)}$, and, hence, each matrix corresponds to a selfadjoint operator in l_2.

Theorem 3. For each $m \in \{0, 1, 2, \ldots\}$ and $\lambda \geq 3$ the sequence of operators $\{J^{(m\lambda^n)}\}_{n=0}^{\infty}$ converges strongly to J.

This theorem, and indeed Theorem 2 also, are immediate when $\lambda = 3$ because then

$$J = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}.$$

Proof of Theorem 3. Since the spectrum of J is compact, the entries of $J^{(m\lambda^n)}$ are uniformly bounded. The result now follows since the weak convergence implied by Theorem 2 implies the strong operator convergence

$$\lim_{n \to \infty} \|J - J^{(m\lambda^n)}\| = 0, \quad \text{for all } x \in l_2,$$

for banded matrices. This completes the proof.

References

5. H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144.

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332