Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A short proof of the algebraic Weierstrass preparation theorem


Author: S. M. Gersten
Journal: Proc. Amer. Math. Soc. 88 (1983), 751-752
MSC: Primary 13J05; Secondary 32B05
MathSciNet review: 702313
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The contraction mapping principle yields a short proof of the algebraic Weierstrass Preparation Theorem.


References [Enhancements On Off] (What's this?)

  • [B] N. Bourbaki, Éléments de mathématique. Fasc. XXXI. Algèbre commutative. Chapitre 7: Diviseurs, Actualités Scientifiques et Industrielles, No. 1314, Hermann, Paris, 1965 (French). MR 0260715 (41 #5339)
  • [K-K-O] D. Kreider, R. Kuller and D. Ostberg, Elementrary differential equations, Addison-Wesley, Reading, Mass., 1968.
  • [Z-S] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR 0120249 (22 #11006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13J05, 32B05

Retrieve articles in all journals with MSC: 13J05, 32B05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1983-0702313-2
PII: S 0002-9939(1983)0702313-2
Keywords: Complete local ring, distinguished polynomial, complete metric space, contraction mapping principle
Article copyright: © Copyright 1983 American Mathematical Society