SHORTER NOTES

The purpose of this department is to publish very short papers of unusually elegant and polished character, for which there is no other outlet.

A SHORT PROOF OF THE ALGEBRAIC WEIERSTRASS PREPARATION THEOREM

S. M. GERSTEN

Abstract. The contraction mapping principle yields a short proof of the algebraic Weierstrass Preparation Theorem.

Let A be a complete local ring with maximal ideal m [Z-S, p. 254]. We assume A is separated in the m-adic topology, so $A \to \lim A/m^n$. We do not assume A is noetherian. Let $B = A[[t]]$. A distinguished polynomial in B is of the form $\pi = \pi_0 + \pi_1 t + \cdots + \pi_n t^n + \pi_{n+1} t^{n+1} + \cdots$, where $\pi_i \in m$. We shall give a proof of the

Weierstrass Preparation Theorem. If $f = \sum a_i t^i \in B$, where $a_i \in A$, and if $\exists n \in \mathbb{N}$ s.t. $a_i \in m$, $i < n$, and $a_n \notin m$, then $f = u\pi$, where u is a unit of B and π is a distinguished polynomial of degree n. Also u and π are uniquely determined by f.

We make A into a metric space [Z-S, p. 253] by setting

$$d(a, a') = \begin{cases} 0 & \text{if } a = a' \\ 2^{-s} & \text{if } a \neq a' \text{ and } a, a' \in m^s - m^{s+1} \end{cases}$$

Then B becomes a metric space by the supremum of distance of coefficients: if $f = \sum a_i t^i$ and $f' = \sum a_i' t^i$, where $a_i, a_i' \in A$, then $d(f, f') = \sup_{i \in \mathbb{N}} d(a_i, a_i')$. It is readily checked that B is a complete metric space. In addition, observe that if $b \in m[[t]]$, then $d(bf, bf') < \frac{1}{2} d(f, f')$.

Division Theorem. If $f, b \in B$ with $b \in m[[t]]$ and if $n \in \mathbb{N}$, then $f = q(t^n + b) + r$, where $q, r \in B$ and r is a polynomial in t of degree $< n$. In addition, q and r are uniquely determined by f and b.

Proof. We remind the reader of the contraction mapping principle [K-K-O]: if $T: B \to B$ is a continuous map on a nonempty complete metric space B s.t. $\exists 0 < k < 1$
with \(d(T(x), T(x')) \leq kd(x, x') \) for all \(x, x' \in B \), then \(\exists \) a unique \(q \in B \) s.t. \(T(q) = q \).

Define \(E: B \to B \) by \(x = p + E(x)t^n \), where \(p \) is a polynomial in \(t \) of degree \(< n \). Define \(T: B \to B \) by \(T(x) = E(f - xb) \); i.e. \(f - xb = p + T(x) \cdot t^n \), where \(p \) is a polynomial of degree \(< n \). If \(x' \in B \), then \(f - x'b = p' + T(x')t^n \), where \(p' \) is a polynomial of degree \(< n \), so subtracting we get

\[-b(x - x') = p'' + (T(x) - T(x')) \cdot t^n,
\]

where \(p'' \) is a polynomial of degree \(< n \). Observe that the coefficients of \(T(x) - T(x') \) involve only coefficients of the left-hand side of degree \(\geq n \). We deduce that

\[d(T(x), T(x')) \leq d(bx, bx') \leq \frac{1}{2}d(x, x'), \]

since \(b \in m[[t]] \). Thus \(T \) is a contraction mapping, and we deduce from the contraction mapping principle that there is a unique \(q \in B \) such that \(T(q) = q \). That is, \(f - qb = r + qt^n \), or \(f = q(t^n + b) + r \), where \(r \) is a polynomial of degree \(< n \). This completes the proof of the division theorem.

The deduction of the preparation theorem from the division theorem is straightforward (cf. [B, p.41]).

References

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112