Rotations and linkage of -fold Pfister forms

Author:
Robert W. Fitzgerald

Journal:
Proc. Amer. Math. Soc. **89** (1983), 19-23

MSC:
Primary 11E04; Secondary 15A63

DOI:
https://doi.org/10.1090/S0002-9939-1983-0706502-2

MathSciNet review:
706502

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a pair of -fold Pfister forms admit rotations with the same irreducible, separable characteristic polynomial if and only if they are linked.

**[1]**R. Baeza,*Discriminants of polynomials and of quadratic forms*, J. Algebra**72**(1981), 17-28. MR**634615 (83i:10024)****[2]**B. Edwards,*The eigenvalues of four dimensional rotations*, Linear and Multilinear Algebra**5**(1978), 283-287. MR**0469948 (57:9728)****[3]**R. Elman,*Quadratic forms and the**-invariant*. III, (Proc. Quadratic Form Conf., 1976) (G. Orzech. ed.), Queen's Papers Pure and Appl. Math.**46**(1977), 422-444. MR**0491490 (58:10732)****[4]**R. Elman and T. Y. Lam,*Quadratic forms over formally real and pythagorean fields*, Amer. J. Math.**94**(1972), 1155-1194. MR**0314878 (47:3427)****[5]**-,*Pfister forms and their applications*, J. Number Theory**5**(1973), 367-378. MR**0417054 (54:5115)****[6]**T. Y. Lam,*The algebraic theory of quadratic forms*, Benjamin, Reading, Mass., 1973. MR**0396410 (53:277)****[7]**E. Snapper and R. Troyer,*Metric affine geometry*, Academic Press, New York, 1971. MR**0300190 (45:9238)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11E04,
15A63

Retrieve articles in all journals with MSC: 11E04, 15A63

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0706502-2

Article copyright:
© Copyright 1983
American Mathematical Society