Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rotations and linkage of $ 2$-fold Pfister forms


Author: Robert W. Fitzgerald
Journal: Proc. Amer. Math. Soc. 89 (1983), 19-23
MSC: Primary 11E04; Secondary 15A63
DOI: https://doi.org/10.1090/S0002-9939-1983-0706502-2
MathSciNet review: 706502
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a pair of $ 2$-fold Pfister forms admit rotations with the same irreducible, separable characteristic polynomial if and only if they are linked.


References [Enhancements On Off] (What's this?)

  • [1] R. Baeza, Discriminants of polynomials and of quadratic forms, J. Algebra 72 (1981), 17-28. MR 634615 (83i:10024)
  • [2] B. Edwards, The eigenvalues of four dimensional rotations, Linear and Multilinear Algebra 5 (1978), 283-287. MR 0469948 (57:9728)
  • [3] R. Elman, Quadratic forms and the $ u$-invariant. III, (Proc. Quadratic Form Conf., 1976) (G. Orzech. ed.), Queen's Papers Pure and Appl. Math. 46 (1977), 422-444. MR 0491490 (58:10732)
  • [4] R. Elman and T. Y. Lam, Quadratic forms over formally real and pythagorean fields, Amer. J. Math. 94 (1972), 1155-1194. MR 0314878 (47:3427)
  • [5] -, Pfister forms and their applications, J. Number Theory 5 (1973), 367-378. MR 0417054 (54:5115)
  • [6] T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, Reading, Mass., 1973. MR 0396410 (53:277)
  • [7] E. Snapper and R. Troyer, Metric affine geometry, Academic Press, New York, 1971. MR 0300190 (45:9238)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11E04, 15A63

Retrieve articles in all journals with MSC: 11E04, 15A63


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0706502-2
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society