Rotations and linkage of -fold Pfister forms

Author:
Robert W. Fitzgerald

Journal:
Proc. Amer. Math. Soc. **89** (1983), 19-23

MSC:
Primary 11E04; Secondary 15A63

MathSciNet review:
706502

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a pair of -fold Pfister forms admit rotations with the same irreducible, separable characteristic polynomial if and only if they are linked.

**[1]**Ricardo Baeza,*Discriminants of polynomials and of quadratic forms*, J. Algebra**72**(1981), no. 1, 17–28. MR**634615**, 10.1016/0021-8693(81)90310-0**[2]**Bruce H. Edwards,*The eigenvalues of four-dimensional rotations*, Linear and Multilinear Algebra**5**(1977/78), no. 4, 283–287. MR**0469948****[3]**Richard Elman,*Quadratic forms and the 𝑢-invariant. III*, Conference on Quadratic Forms—1976 (Proc. Conf., Queen’s Univ., Kingston, Ont., 1976) Queen’s Univ., Kingston, Ont., 1977, pp. 422–444. Queen’s Papers in Pure and Appl. Math., No. 46. MR**0491490****[4]**Richard Elman and T. Y. Lam,*Quadratic forms over formally real fields and pythagorean fields*, Amer. J. Math.**94**(1972), 1155–1194. MR**0314878****[5]**Richard Elman and T. Y. Lam,*Pfister forms and their applications*, J. Number Theory**5**(1973), 367–378. The arithmetical theory of quadratic forms, I (Proc. Conf., Louisiana State Univ., Baton Rouge, La., 1972; dedicated to Louis Joel Mordell). MR**0417054****[6]**T. Y. Lam,*The algebraic theory of quadratic forms*, W. A. Benjamin, Inc., Reading, Mass., 1973. Mathematics Lecture Note Series. MR**0396410****[7]**Ernst Snapper and Robert J. Troyer,*Metric affine geometry*, Academic Press, New York-London, 1971. MR**0300190**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11E04,
15A63

Retrieve articles in all journals with MSC: 11E04, 15A63

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0706502-2

Article copyright:
© Copyright 1983
American Mathematical Society