FACTORIZATION IN CODIMENSION TWO IDEALS
OF GROUP ALGEBRAS

G. A. WILLIS

Abstract. Let G be a finitely generated group and I be a closed, two-sided ideal
with codimension two in $L^1(G)$. Then the linear span of the set of all products in I is
equal to I.

Let A be a complex algebra. For $I, J \subseteq A$, define $IJ = \{ \sum_{k=1}^n a_k b_k \mid n \in \mathbb{N};
\forall k \leq n, a_k \in I, b_k \in J \}$, and abbreviate II as I^2. It is clear that if I is an ideal
in A, then $I^2 \subseteq I$ (by ideal will always be meant a two-sided ideal). The ideal I is
said to be idempotent if $I^2 = I$.

Now suppose that A is also a Banach algebra. Then a question which arises in
connection with automatic continuity problems for A is whether I is idempotent
whenever I is a closed finite-codimensional ideal in A. For example, see [2, §6] and
[3].

This question is particularly interesting when A is the group algebra, $L^1(G)$, of
a locally compact group G, as there are several classes of groups such that every
finite-codimensional ideal in $L^1(G)$ is idempotent. For example, it is an immediate
consequence of Theorem 2 in [5] that, if G is amenable, then every closed,
finitely-codimensional ideal in $L^1(G)$ has a bounded approximate identity. Hence, by
Cohen’s factorization theorem [1, Theorem 11.10], every such ideal is idempotent. It
is also shown in [8] that, if G is connected, then every closed, finitely-codimensional
ideal in $L^1(G)$ is idempotent. Furthermore, in [6] it is shown that closed ideals with
codimension one in $L^1(G)$ are idempotent for every G. Every group algebra has
at least one codimension one ideal, namely the augmentation ideal $I_0(G) = \{ f \in L^1(G) \mid \int_G f \, dx = 0 \}$.

This paper is concerned with ideals with codimension two in $L^1(G)$. The main
theorem deals with finitely generated groups. Since a finitely generated group G is
countable, Haar measure on G will be discrete. Hence we may normalize it to be
counting measure and take $L^1(G)$ to be the set of functions f on G with

$$
\|f\| = \sum_{x \in G} |f(x)| < \infty.
$$

The function which takes the value one at x and is zero elsewhere will be denoted by
x. If 1 is the identity element of G, then $\bar{1}$ is a multiplicative identity for $L^1(G)$.

Received by the editors September 9, 1982.

1980 Mathematics Subject Classification. Primary 43A20; Secondary 46H10.

©1983 American Mathematical Society

0002-9939/83/0000-1478/$02.50

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

95
Theorem 1. Let G be a finitely generated group and I be a closed, two-sided ideal with codimension two in $L^1(G)$. Then I is idempotent.

Proof. Consider $L^1(G)/I$. It is a two-dimensional complex algebra with unit, and is semisimple by [3, Lemma 3.1]. (Alternatively, $L^1(G)/I$ may be shown to be semisimple in the following way. Let $\rho : L^1(G) \to L^1(G)/I$ be the quotient homomorphism and R be the radical of $L^1(G)/I$. Then if $R \neq (0)$, $\rho^{-1}(R)$ is a non-idempotent codimension one ideal in $L^1(G)$, which contradicts the theorem of [6].) Hence $L^1(G)/I$ is isomorphic to $\mathbb{C} \oplus \mathbb{C}$ and so there are multiplicative linear functionals ϕ_0 and ϕ_1 on $L^1(G)$ such that $I = \ker \phi_0 \cap \ker \phi_1$.

Let χ_0 and χ_1 be the characters on G such that
\[
\phi_j(f) = \sum_{x \in G} f(x)\chi_j(x) \quad (f \in L^1(G), j = 0, 1)
\]
(see [4, Corollary 23.7]). Define an automorphism T of $L^1(G)$ by
\[
(Tf)(x) = f(x)\chi_0(x) \quad (x \in G, f \in L^1(G)).
\]
Then $T(I)$ is a codimension two ideal in $L^1(G)$ and in order to show that I is idempotent it will suffice to show that $T(I)$ is idempotent. Hence, replacing I by $T(I)$ and $\phi_0 \circ T^{-1}$, we may suppose that χ_0 is the trivial character and $\ker \phi_0$ is the augmentation ideal of $L^1(G)$.

Now suppose that G is generated by n elements y_1, y_2, \ldots, y_n and let F_n be the free group on n generators x_1, x_2, \ldots, x_n. Then there is a surjective group homomorphism $\varphi : F_n \to G$ defined by
\[
\varphi(x_i) = y_i, \quad i = 1, 2, \ldots, n,
\]
and a surjective algebra homomorphism $Q : L^1(F_n) \to L^1(G)$ defined by
\[
(Qf)(y) = \sum_{x \in \varphi^{-1}(y)} f(x) \quad (y \in G, f \in L^1(F_n)).
\]
It is clear that $Q^{-1}(I)$ is a codimension two ideal in $L^1(F_n)$ and that I is idempotent if $Q^{-1}(I)$ is. Hence it will suffice to prove the theorem in the case when $G = F_n$.

If χ_i was the trivial character, then we would have that $\phi_0 = \phi_i$ and I would have codimension one. Thus χ_i is not trivial and we may suppose that $\chi_i(x_i) \neq 1$. Now if $\chi_i(x_i) = 1$ for some i, then $\chi_i(x_1x_i) \neq 1$ and $\{x_1, \ldots, x_{i-1}, x_1x_i, x_{i+1}, \ldots, x_n\}$ still generates F_n freely. Thus, by replacing x_i with x_ix_i if necessary, we may further suppose that $\chi_i(x_i) \neq 1$ for each i.

It is convenient to introduce a little more notation. Let 2^n denote the set of all functions on $\{1, 2, \ldots, n\}$ taking values 0 or 1. For each t in 2^n, define $e(t)$ in $L^1(F_n)$ by $e(t) = (c_1 \bar{1} - \bar{x}_i) \ast (c_2 \bar{1} - \bar{x}_2) \ast \cdots \ast (c_n \bar{1} - \bar{x}_n)$, where $c_i = 1$ if $t(i) = 0$ and $c_i = \chi_i(x_i)$ if $t(i) = 1$. The constant functions in 2^n with values 0 and 1 will be denoted by 0 and 1 respectively. We will require the following lemma.

Lemma. Let t be in $2^n \setminus \{0, 1\}$. Then $e(t)$ is in I^2.

Proof. Since t is not constant, there is an i between 1 and $n - 1$ such that either
\[
e(t) = \cdots \ast (\bar{1} - \bar{x_i}) \ast (\chi_1(x_{i+1})\bar{1} - \bar{x}_{i+1}) \ast \cdots
\]
or
\[e(t) = \cdots \ast (\chi_i(x_i) \tilde{1} - \bar{x}_i) \ast (\tilde{1} - \bar{x}_{i+1}) \ast \cdots. \]
Thus, since \(I^2 \) is an ideal in \(L^1(\mathbb{F}_n) \), it will suffice to show that
\[
(\tilde{1} - \bar{x}_i) \ast (\chi_i(x_{i+1}) \tilde{1} - \bar{x}_{i+1}) \quad \text{and} \quad (\chi_i(x_i) \tilde{1} - \bar{x}_i) \ast (\tilde{1} - \bar{x}_{i+1})
\]
are in \(I^2 \) for each \(i \) between 1 and \(n - 1 \).

For this, choose \(h \) in \(L^1(\mathbb{F}_n) \) such that \(h \) is in \(\ker \phi_1 \) and \(\tilde{1} - h \) is in \(\ker \phi_0 \). Then
\[
\begin{align*}
(1) \quad (\tilde{1} - \bar{x}_i) \ast (\chi_i(x_{i+1}) \tilde{1} - \bar{x}_{i+1}) &= h \ast (\tilde{1} - \bar{x}_i) \ast (\chi_i(x_{i+1}) \tilde{1} - \bar{x}_{i+1}) \\
+ (\tilde{1} - h) \ast (\chi_i(x_{i+1}) \tilde{1} - \bar{x}_{i+1}) \ast (\tilde{1} - \bar{x}_i) + (\tilde{1} - h) \ast (\chi_i(x_{i+1} - \bar{x}_{i+1})x_i).
\end{align*}
\]
Now \(\tilde{1} - \bar{x}_i \) has a square root defined by the binomial expansion
\[
(\tilde{1} - \bar{x}_i)^{1/2} = \sum_{k=0}^{\infty} \binom{1/2}{k} (\bar{x}_i)^k,
\]
where the series converges because \((1/2)^k \) is an \(l^1 \)-sequence and because \(||(\bar{x}_i)^k|| = 1 \) for each \(k \). The square root is in \(\ker \phi_0 \) because \(0 = \phi_0(\tilde{1} - \bar{x}_i) = \phi_0((1 - \bar{x}_i)x_i^{1/2})^2 \).

Hence
\[
h \ast (\tilde{1} - \bar{x}_i) \ast (\chi_i(x_{i+1}) \tilde{1} - \bar{x}_{i+1})
\]
\[
= \left[h \ast (\tilde{1} - \bar{x}_i)^{1/2} \right] \ast \left[(\tilde{1} - \bar{x}_i)^{1/2} \ast (\chi_i(x_{i+1}) \tilde{1} - \bar{x}_{i+1}) \right]
\]
\[
\in \left[\ker \phi_1 \ast \ker \phi_0 \right] \ast \left[\ker \phi_0 \ast \ker \phi_1 \right] \subseteq I^2.
\]

It may be shown in the same way that \((\tilde{1} - h) \ast (\chi_i(x_{i+1}) \tilde{1} - \bar{x}_{i+1}) \ast (\tilde{1} - \bar{x}_i) \) is in \(I^2 \). Finally,
\[
\chi_i(x_{i+1} - \bar{x}_{i+1}x_i) = (\tilde{1} - (x_{i+1}x_i^{1}x_{i+1}^{1})^{-1}) \ast (\bar{x}_i^{1}x_{i+1}^{1}),
\]
where \(\tilde{1} - (x_{i+1}x_i^{1}x_{i+1}^{1})^{-1} \) is in \(I \) and has a square root which must also be in \(I \)
because \(I = \ker \phi_0 \cap \ker \phi_1 \). Hence \(x_{i+1}x_i^{1} - x_i^{1}x_{i+1} \) is in \(I^2 \) also. It now follows from (1) that \((\tilde{1} - \bar{x}_i) \ast (\chi_i(x_{i+1}) \tilde{1} - \bar{x}_{i+1}) \) is in \(I^2 \) for each \(i \). That \((\chi_i(x_i) \tilde{1} - \bar{x}_i) \ast (\tilde{1} - \bar{x}_{i+1}) \) is in \(I^2 \) also may be proved in the same way.

We now continue the proof of the theorem. Every \(x \) in \(\mathbb{F}_n \) may be written uniquely in the form \(x = x_1^1x_2^2 \cdots x_n^nx_0y \), where \(k_1, k_2, \ldots, k_n \) are integers and \(y \) is in \(\mathbb{F}_n' \), the commutator subgroup of \(\mathbb{F}_n \). For each \(i \) between 1 and \(n \), let \(Z_i = \langle x_i^k \cdots x_n^ny | k_1, \ldots, k_n \in \mathbb{Z}, y \in \mathbb{F}_n' \rangle \) and let \(\langle x_i \rangle \) be the subgroup of \(\mathbb{F}_n \) generated by \(x_i \). Let \(Z_{n+1} = \mathbb{F}_n' \). Then \(Z_i = \mathbb{F}_n \) and \(Z_{i+1} \subseteq Z_i \), \(i = 1, 2, \ldots, n \).

Let \(i \) be between 1 and \(n \) and denote by \(L^1(\langle x_i \rangle) \) and \(L^1(Z_i) \) the spaces of functions in \(L^1(\mathbb{F}_n) \) with support in \(\langle x_i \rangle \) and \(Z_i \) respectively. Since \(\chi_i(x_i) \neq 1 \), \(L^1(\langle x_i \rangle) \cap I \) has codimension two in \(L^1(\langle x_i \rangle) \). Hence we may define bounded linear functionals \(\eta, \xi \) on \(L^1(\langle x_i \rangle) \) and a bounded linear operator \(T: L^1(\langle x_i \rangle) \to L^1(\langle x_i \rangle) \cap I \) in a unique way such that for each \(f \) in \(L^1(\langle x_i \rangle) \),
\[
(2) \quad f = \eta(f)(\tilde{1} - \bar{x}_i) + \xi(f)(\chi_i(x_i) \tilde{1} - \bar{x}_i) + T(f).
\]
Furthermore, $L^1(\langle x, \rangle)$ is a subalgebra of $L^1(F_n)$ isomorphic to $L^1(\mathbb{Z})$ (the group algebra of the integers) and $L^1(\langle x, \rangle) \cap I$ is a closed ideal in $L^1(\langle x, \rangle)$. Hence, by [5, Theorem 2], $L^1(\langle x, \rangle) \cap I$ has a bounded approximate identity. Let J_i be the closed linear span of $(L^1(\langle x, \rangle) \cap I) \ast L^1(F_n)$. Then it is clear that J_i is a left Banach module over $L^1(\langle x, \rangle) \cap I$, that J_i is contained in I, and that $L^1(\langle x, \rangle) \cap I$ has a bounded approximate identity for J_i (in the sense of [1, 11.8]).

Now for each f in $L^1(Z_n)$ and each z in Z_{n+1}, let f_z be the function in $L^1(\langle x, \rangle)$ defined by $f_z(x^k) = f(x^k z)$. Then $\Sigma_{z \in Z_{n+1}} \|f_z\| = \|f\|$ and $f = \Sigma_{z \in Z_{n+1}} f_z \ast \bar{z}$. Hence, by (2),

$$f = (\bar{x} - \bar{x}_i) \ast \left(\Sigma_{z \in Z_{n+1}} \eta(f_z) \bar{z} \right) + (\chi_i(x_i) \bar{z} - \bar{x}_i) \ast \left(\Sigma_{z \in Z_{n+1}} \xi(f_z) \bar{z} \right)$$

Put $h = \Sigma_{z \in Z_{n+1}} T(f_z) \ast \bar{z}$. Then h is in J_i and so, by Cohen’s factorization theorem [1, 11.10], there are a in $L^1(\langle x, \rangle) \cap I$ and h' in J_i such that $h = a \ast h'$. Since both $L^1(\langle x, \rangle) \cap I$ and J_i are contained in I, it follows that h is in I^2. Hence, putting $\Sigma_{z \in Z_{n+1}} \eta(f_z) \bar{z} = g_0$ and $\Sigma_{z \in Z_{n+1}} \xi(f_z) \bar{z} = g_1$, we have shown that for each f in $L^1(Z_n)$, (3)

$$f = (\bar{z} - \bar{x}_i) \ast g_0 + (\chi_i(x_i) \bar{z} - \bar{x}_i) \ast g_1 + h,$$

where g_0 and g_1 are in $L^1(Z_{n+1})$ and h is in I^2.

In particular, if f is in $L^1(F_n)$, then

$$f = (\bar{z} - \bar{x}_i) \ast g_0 + (\chi_i(x_i) \bar{z} - \bar{x}_i) \ast g_1 + h,$$

where g_0 and g_1 are in $L^1(Z_n)$ and h is in I^2. Next, applying (3) to g_0 and g_1 and remembering that I^2 is an ideal, we find that

$$f = (\bar{z} - \bar{x}_i) \ast (\bar{z} - \bar{x}_2) \ast g_{00} + (\bar{z} - \bar{x}_i) \ast (\chi_i(x_2) \bar{z} - \bar{x}_2) \ast g_{01} + (\chi_i(x_1) \bar{z} - \bar{x}_1) \ast (\bar{z} - \bar{x}_2) \ast g_{10} + (\chi_i(x_1) \bar{z} - \bar{x}_1) \ast (\chi_i(x_2) \bar{z} - \bar{x}_2) \ast g_{11} + h''$$

where g_{00}, g_{01}, g_{10}, g_{11} are in $L^1(Z_3)$ and h'' is in I^2. Now applying (3) to g_{00}, g_{01}, g_{10} and g_{11} and so on, we find after n steps that for each f in $L^1(F_n)$,

$$f = \sum_{t \in \mathbb{Z}_n} e(t) \ast g(t) + \psi,$$

where $g(t)$ is in $L^1(Z_{n+1}) (= L^1(F_n))$ for every t in 2^n and ψ is in I^2. Finally, by the lemma, $e(t)$ is in I^2 for each t other than 0 or I and so for every f in $L^1(F_n)$,

$$f = e(0) \ast g(0) + e(1) \ast g(1) + \psi',$$

where $g(0)$ and $g(1)$ are in $L^1(F_n')$ and ψ' is in I^2.

Let f be in I. Then,

$$0 = \phi_1(f) = \phi_1(e(0))\phi_1(g(0)) + \phi_1(e(1))\phi_1(g(1)) + \phi_1(\psi').$$

Since $\phi_1(\psi') = 0 = \phi_1(e(1))$ and $\phi_1(e(0)) \neq 0$, it follows that $\phi_1(g(0)) = 0$. Thus,

$$0 = \sum_{x \in F_n} g(0)(x)\chi_1(x) = \sum_{y \in F_n} g(0)(y).$$
because $g(0)$ is supported in $I_0(F'_n)$ and characters are trivial on F'_n. Hence $g(0)$ is in $I_0(F'_n)$. Similarly, using the fact that $\phi_0(f) = 0$, it may be shown that $g(I)$ is in $I_0(F'_n)$. Now $I_0(F'_n)$ is contained in I and is idempotent by [6]. Hence,

$$g(0), g(I) \in I_0(F'_n) = I_0(F'_n)^2 \subseteq I^2,$$

and so f is in I^2. Therefore I is idempotent.

There are still many unanswered questions concerning factorization in finite-codimensional ideals of group algebras. Some of these questions are discussed in more detail in \S4 of [7]. It is mentioned there, without proof, that the above theorem may be used to show that, if G is finitely generated, then every ideal I such that $L^1(G)/I$ is commutative and finite dimensional is idempotent. In particular it follows that, if G is finitely generated, then every ideal with codimension three in $L^1(G)$ is idempotent. We now give a proof of this fact.

Theorem 2. Let A be a complex algebra such that $A^2 = A$. Suppose that

(i) every ideal with codimension one in A is idempotent; and
(ii) if I and J are ideals with codimension one in A, then $II = JI$.

Then every ideal I in A such that A/I is finite dimensional and commutative is idempotent.

Proof. By adjoining an identity we may assume that A has a unit, which we will denote by 1. Let I be an ideal in A with A/I commutative and finite dimensional, but with $\dim(A/I) > 2$. We may suppose that every ideal properly containing I is idempotent.

Denote by ρ the quotient map from A to A/I and let R be the radical of A/I. If $R \neq (0)$, then $R^2 \subseteq R$ because R is a finite-dimensional radical algebra. Hence, if $R \neq (0)$, $(\rho^{-1}(R))^2 \subseteq \rho^{-1}(R^2) = \rho^{-1}(R)$, and so $\rho^{-1}(R)$ is a nonidempotent ideal in A which properly contains I. Therefore $R = (0)$, and so A/I is semisimple. It follows that A/I is isomorphic to the direct sum of n copies of C, where n is the codimension of I. Hence, there are ideals I_1, I_2, \ldots, I_n with codimension one in A such that $I = \bigcap_{j=1}^n I_j$.

Since I_1 and I_2 are distinct codimension one ideals in A, there is an h in I_1 such that $1 - h$ is in I_2. Hence, for each f in I, $f = fh + f(1 - h)$, and so $I \subseteq II_1 + II_2$.

Similarly, if j_1, j_2, \ldots, j_k are distinct integers between 1 and n, where $k \leq n - 2$, and i_1 and i_2 are distinct integers not equal to any of the j_k's then

$$II_{j_1}I_{j_2} \cdots I_{j_k} \subseteq II_{j_1} \cdots I_{j_k}I_{i_1} + II_{j_1} \cdots I_{j_k}I_{i_2},$$

where now $\{j_1, j_2, \ldots, j_k, i_1\}$ and $\{j_1, j_2, \ldots, j_k, i_2\}$ are sets of distinct integers. We may thus show that I is contained in the sum of ideals of the form $II_{j_1}I_{j_2} \cdots I_{j_n}$, where j_1, j_2, \ldots, j_n are distinct integers between 1 and n. However, $I \subseteq \bigcap_{j=1}^n I_j$, and so $II_{j_1}I_{j_2} \cdots I_{j_n} \subseteq I_{j_1}I_{j_2} \cdots I_{j_n}$, where j_1 is chosen to be the integer between 1 and n which does not appear in the list j_2, j_3, \ldots, j_n. Therefore,

$$I \subseteq \sum_{\pi \in S_n} (I_{\pi(1)}I_{\pi(2)} \cdots I_{\pi(n)}),$$

where S_n is the group of permutations of $\{1, 2, \ldots, n\}$.

Now,
\[I_1 I_2 \cdots I_n = (I_1)^2 (I_2)^2 \cdots (I_n)^2, \text{ by (i)}, \]
\[= I_1 I_2 I_1 I_2 (I_3)^2 \cdots (I_n)^2, \text{ by (ii)}, \]
\[= (I_1 I_2 I_3)^2 (I_4)^2 \cdots (I_n)^2, \text{ by (ii) applied twice}, \]
\[= \cdots \]
\[= (I_1 I_2 \cdots I_n)^2 \subseteq I^2. \]

Similarly, \(I_{\pi(1)} I_{\pi(2)} \cdots I_{\pi(n)} \subseteq I^2 \) for every \(\pi \) in \(S_n \). Therefore, by (4), \(I \subseteq I^2 \).

Remarks. (a) The codimension one ideals of \(A \) will satisfy (ii) either if \(A \) is commutative (clear) or if the codimension two ideals of \(A \) are idempotent \((IJ \subseteq I \cap J = (I \cap J)^2 \subseteq JJ) \).

(b) If \(A \) is a Banach algebra and \(A^2 = A \), then every codimension one ideal in \(A \) is closed. Hence we need only verify that (i) and (ii) hold for the closed codimension one ideals of \(A \). Furthermore, in the course of the proof it was shown that if \(A \) satisfies (i) and (ii) and if \(I \) is an ideal in \(A \) such that \(A/I \) is commutative and finite dimensional, then \(I \) is the intersection of codimension one ideals. Hence under these conditions \(I \) is closed.

(c) Suppose that \(A \) satisfies the conditions of the theorem, then all ideals with codimension two or three in \(A \) are idempotent. If \(I \) has codimension two, then \(A/I \) is semisimple (otherwise the inverse image of \(\text{Rad}(A/I) \) will be a nonidempotent codimension one ideal). Hence \(A/I \) is isomorphic to \(\mathbb{C} \oplus \mathbb{C} \) (the only semisimple, two-dimensional complex algebra). Now \(\mathbb{C} \oplus \mathbb{C} \) is commutative and so \(I \) is idempotent by the theorem. A similar argument proves the result for codimension three ideals. The result does not necessarily hold for codimension four ideals because there is a four-dimensional noncommutative, semisimple complex algebra—namely the \(2 \times 2 \) complex matrices.

References

8. ______, The continuity of derivations from group algebras: factorizable and connected groups (to appear).

School of Mathematics, University of New South Wales, Kensington, N.S.W., 2033, Australia
Current address: Department of Mathematics, Dalhousie University, Halifax, N.S. B3H 4H6, Canada