RELATIVE C*-SUMS

S. K. BERBERIAN

ABSTRACT. A "bounded choice" theorem is proved for AW*-subalgebras of a C*-sum.

A classical tool in the structure theory of AW*-algebras is the C*-sum: If A is an AW*-algebra and (h_i) is an orthogonal family of central projections with supremum 1, then A is *-isomorphic to $\bigoplus h_i A$ (the C*-algebra of all norm-bounded families $x = (x_i)$ with $x_i \in h_i A$, $\|x\| = \sup \|x_i\|$, $x^* = (x_i^*)$ and the coordinatewise algebra operations) [5, Lemma 2.5]. The following generalization has useful applications in the structure theory [2] and embedding theory [3] of AW*-algebras, the idea being that one can simultaneously decompose any AW*-subalgebra B of A (even if B does not contain the h_i):

Theorem. Let A be an AW*-algebra, $(h_i)_{i \in I}$ an orthogonal family of central projections of A with $\sup h_i = 1$, B an AW*-subalgebra of A, e the unity element of B. Then:

1. For each $i \in I$, $h_i B$ is an AW*-subalgebra of A;
2. $B \subseteq \bigoplus h_i B \subseteq A$, the inclusions being AW*-embeddings;
3. $\bigoplus h_i B$ is the set of all families $(h_i, b_i)_{i \in I}$ with $b_i \in B$ and $\sup \|b_i\| < \infty$;
4. $B = \bigoplus h_i B$ if and only if $h_i e \in B$ for all $i \in I$.

Proof. The hypothesis on B is that it is a norm-closed *-subalgebra of A such that (i) B contains the supremum (as calculated in A) of every orthogonal family of projections in B, and (ii) $b \in B$ implies $RP(b) \in B$ (where RP denotes right-projection as calculated in A). It follows that (iii) B is itself an AW*-algebra, and the word "orthogonal" can be omitted in (i). {For a closed *-subalgebra B of A, the conditions (i), (ii) are equivalent to the conditions (i), (iii) [6, Lemma 2].}

(1) Let h be any central projection of A. The mapping $B \rightarrow h A$ defined by $b \mapsto h b$ is a *-homomorphism, so its range $h B$ is a C*-algebra [4, 1.8.3]. If $x \in h B$, say $x = h b$ with $b \in B$, then $RP(x) = h RP(b)$; by hypothesis $RP(b) \in B$, so $RP(x) \in h B$. In particular, every projection $g \in h B$ may be written $g = h f$ with f a projection of B. If (f_i) is a family of projections of B and if $f = \sup f_i$ (as calculated in B or in A—it is the same), then $\sup (h f_i) = h f$; this shows that $h B$ contains the supremum (in A) of every family of its projections. Thus $h B$ is an AW*-subalgebra of A.

(2) The inclusions are obvious (on identifying A with $\bigoplus h_i A$). Since $h B$ is an AW*-subalgebra of A, hence of $h_i A$, it follows that $\bigoplus h_i B$ is an AW*-subalgebra of $\bigoplus h_i A$.

Received by the editors November 29, 1982.
1980 Mathematics Subject Classification. Primary 46L10.

©1983 American Mathematical Society
0002-9939/82/0000-2270/$01.50
\(\bigoplus h_i A = A \). Then \(B \), being an \(\text{AW}^* \)-subalgebra of \(A \), is also an \(\text{AW}^* \)-subalgebra of \(\bigoplus h_i B \).

(3) Write \(\overline{B} = \bigoplus B_i \), where \(B_i = B \) for all \(i \in I \). The mapping \(\varphi: \overline{B} \to \bigoplus h_i B \) defined by \(\varphi((b_i)) = (h_i b_i) \) is a \(*\)-homomorphism, therefore its range \(\varphi(\overline{B}) \) is a \(C^* \)-subalgebra of \(\bigoplus h_i B \). Let us show that \(\varphi(\overline{B}) \) contains every projection \(e \) of \(\bigoplus h_i B \). Say \(e = (h_i b_i) \), where \(b_i \in B \) and \(\sup \| h_i b_i \| < \infty \). The elements \(h_i b_i \) are themselves projections, therefore \(h_i b_i = \text{RP}(h_i b_i) = h_i \text{RP}(b_i) \), where \(\text{RP}(b_i) \in B \); thus \(e = (h_i f_i) \), where the \(f_i \) are projections in \(B \), consequently \((f_i) \in \overline{B} \) and \(\varphi((f_i)) = e \). Since the \(\text{AW}^* \)-algebra \(\bigoplus h_i B \) is generated by its projections, it follows that \(\varphi(\overline{B}) = \bigoplus h_i B \), which proves (3).

(4) If \(h_i e \in B \) for all \(i \in I \) then \((h_i e) \) is a central partition of the unity element in the \(\text{AW}^* \)-algebra \(B \), therefore \(B = \bigoplus h_i B \). Conversely, if \(B = \bigoplus h_i B \) then \(h_i e \in h_i B \subset B \) for all \(i \in I \).

Property (3) seems striking when expressed in elementary terms: If \(a \) is an element of \(A \) such that, for every \(i \in I \), there exists \(b_i \in B \) with \(h_i a = h_i b_i \), then the family \((b_i)_{i \in I} \) can be chosen so that \(\sup \| b_i \| < \infty \).

References

Department of Mathematics, University of Texas, Austin, Texas 78712