Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On nonisomorphic Room squares


Authors: J. H. Dinitz and D. R. Stinson
Journal: Proc. Amer. Math. Soc. 89 (1983), 175-181
MSC: Primary 05B15
MathSciNet review: 706536
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\text{NR}}(s)$ denote the number of nonisomorphic Room squares of side $ s$. We prove that for $ s$ sufficiently large, $ {\text{NR}}(s) \geqslant \exp (c{s^2})$ for some absolute constant $ c$. More precisely, $ {\text{NR}}(s) \geqslant .19\exp (.04{s^2})$ for $ s \geqslant 153\;{\operatorname{odd}}$; and $ {\text{NR}}(s) \geqslant .19\exp (.09{s^2})$ for $ s \geqslant 1001{\text{ odd }}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 05B15

Retrieve articles in all journals with MSC: 05B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0706536-8
Article copyright: © Copyright 1983 American Mathematical Society