Extremal values of continuants
Author:
G. Ramharter
Journal:
Proc. Amer. Math. Soc. 89 (1983), 189201
MSC:
Primary 11J70; Secondary 11A99
MathSciNet review:
712621
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The following question was posed by C. A. Nicol: Given an arbitrary set of positive integers, find the extremal denominators of regular continued fractions with partial denominators from , each element occurring a given number of times. Partial solutions have been given by T. S. Motzkin and E. G. Straus, and later by T. W. Cusick. We derive the general solutions from a purely combinatorial theorem about the set of permutations of a vector with components from an arbitrary linearly ordered set. We also consider certain halfregular continued fractions. Here the maximizing arrangements have to be described in terms of an algorithmic procedure, as their combinatorial structure is exceptionally complicated. Its investigation leads to a connection with the wellknown Markov spectrum. Finally we obtain an asymptotic formula for the ratio of extremal continuants and some sharp (essentially analytic) inequalities concerning cyclic continuants.
 [1]
I. Borosh, Rational continued fractions with small partial quotients, Notices Amer. Math. Soc. 23 (1976), A52, Abstract 7311029.
 [2]
T.
W. Cusick, The connection between the Lagrange and Markoff
spectra, Duke Math. J. 42 (1975), no. 3,
507–517. MR 0374040
(51 #10240)
 [3]
T.
W. Cusick, Continuants with bounded digits, Mathematika
24 (1977), no. 2, 166–172. MR 0472721
(57 #12413)
 [4]
L. E. Dickson, Introduction to the theory of numbers, Univ. of Chicago Press, Chicago, 1930.
 [5]
V. Jarnik, Zur metrischen Theorie der diophantischen Approximationen, Prace Mat. Fiz. 36 (1928), 91106.
 [6]
I.
J. Good, The fractional dimensional theory of continued
fractions, Proc. Cambridge Philos. Soc. 37 (1941),
199–228. MR 0004878
(3,75b)
 [7]
Edmund
Hlawka, Das Werk Perrons auf dem Gebiete der diophantischen
Approximationen, Jber. Deutsch. Math.Verein. 80
(1978), no. 12, 1–12 (German). MR 0491525
(58 #10764)
 [8]
R.
Kaufman, Continued fractions and Fourier transforms,
Mathematika 27 (1980), no. 2, 262–267 (1981).
MR 610711
(82h:10065), http://dx.doi.org/10.1112/S0025579300010147
 [9]
C.
G. Lekkerkerker, Geometry of numbers, Bibliotheca Mathematica,
Vol. VIII, WoltersNoordhoff Publishing, Groningen; NorthHolland
Publishing Co., AmsterdamLondon, 1969. MR 0271032
(42 #5915)
 [10]
T.
S. Motzkin and E.
G. Straus, Some combinatorial extremum
problems, Proc. Amer. Math. Soc. 7 (1956), 1014–1021. MR 0083457
(18,712d), http://dx.doi.org/10.1090/S00029939195600834571
 [11]
Gerhard
Ramharter, Über asymmetrische diophantische
Approximationen, J. Number Theory 14 (1982),
no. 2, 269–279 (German, with English summary). MR 655731
(83i:10043), http://dx.doi.org/10.1016/0022314X(82)90052X
 [12]
G.
Ramharter, Some metrical properties of continued fractions,
Mathematika 30 (1983), no. 1, 117–132. MR 720955
(85c:11058), http://dx.doi.org/10.1112/S0025579300010469
 [13]
C.
A. Rogers, Some sets of continued fractions, Proc. London
Math. Soc. (3) 14 (1964), 29–44. MR 0158194
(28 #1420)
 [14]
Fred
Supnick, On the dense packing of
spheres, Trans. Amer. Math. Soc. 65 (1949), 14–26. MR 0028586
(10,469a), http://dx.doi.org/10.1090/S00029947194900285864
 [15]
, Optimal closed paths through certain point sets, Bull. Amer. Math. Soc. Abstract 62134.
 [1]
 I. Borosh, Rational continued fractions with small partial quotients, Notices Amer. Math. Soc. 23 (1976), A52, Abstract 7311029.
 [2]
 T. W. Cusick, The connection between the Lagrange and Markov spectra, Duke Math. J. 42 (1975), 507517. MR 0374040 (51:10240)
 [3]
 , Continuants with bounded digits, Mathematika 24 (1977), 166172. MR 0472721 (57:12413)
 [4]
 L. E. Dickson, Introduction to the theory of numbers, Univ. of Chicago Press, Chicago, 1930.
 [5]
 V. Jarnik, Zur metrischen Theorie der diophantischen Approximationen, Prace Mat. Fiz. 36 (1928), 91106.
 [6]
 I. J. Good, The fractional dimension theory of continued fractions, Proc. Cambridge Philos. Soc. 37 (1941), 199228. MR 0004878 (3:75b)
 [7]
 E. Hlawka, Das Werk Perrons auf dem Gebiet der diophantischen Approximationen, Jber. Deutsch. Math.Verein. 80 (1978), 112. MR 0491525 (58:10764)
 [8]
 R. Kaufman, Continued fractions and Fourier transforms, Mathematika 27 (1980), 262267. MR 610711 (82h:10065)
 [9]
 C. G. Lekkerkerker, Geometry of numbers, WoltersNordhoff, Groningen; NorthHolland, Amsterdam, 1969. MR 0271032 (42:5915)
 [10]
 T. S. Motzkin and E. G. Straus, Some combinatorial extremum problems, Proc. Amer. Math. Soc. 7 (1956), 10141021. MR 0083457 (18:712d)
 [11]
 G. Ramharter, Über asymmetrische diophantische Approximationen, J. Number Theory 14 (1982), 269279. MR 655731 (83i:10043)
 [12]
 , Some metrical properties of continued fractions, Mathematika (to appear). MR 720955 (85c:11058)
 [13]
 C. A. Rogers, Some sets of continued fractions, Proc. London Math. Soc. (3) 14 (1964), 2944. MR 0158194 (28:1420)
 [14]
 F. Supnick, On the dense packing of spheres, Trans. Amer. Math. Soc. 65 (1949), 1426. MR 0028586 (10:469a)
 [15]
 , Optimal closed paths through certain point sets, Bull. Amer. Math. Soc. Abstract 62134.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
11J70,
11A99
Retrieve articles in all journals
with MSC:
11J70,
11A99
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198307126217
PII:
S 00029939(1983)07126217
Keywords:
Regular continued fractions,
halfregular continued fractions,
partial orderings,
finite permutation groups,
diophantine approximation,
Markov spectrum,
cyclic continuants,
combinatorial inequalities,
analytic inequalities
Article copyright:
© Copyright 1983
American Mathematical Society
