Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Sums of three integer squares in complex quadratic fields

Authors: Dennis R. Estes and J. S. Hsia
Journal: Proc. Amer. Math. Soc. 89 (1983), 211-214
MSC: Primary 11E12; Secondary 11R11
MathSciNet review: 712624
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify all complex quadratic number fields that have all their algebraic integers expressible as a sum of three integer squares. These fields are $ F = {\mathbf{Q}}(\sqrt { - D} )$, $ D$ a positive square-free integer congruent to $ 3(\mod 8)$ and such that $ D$ does not admit a positive proper factorization $ D \equiv {d_1}{d_2}$ that satisfies simultaneously: $ {d_1} \equiv 5,7(\mod 8)$ and $ ({d_2}/{d_1}) = 1$.

References [Enhancements On Off] (What's this?)

  • [1] D. R. Estes and J. S. Hsia, Exceptional integers of some ternary quadratic forms, Adv. in Math. 45 (1982), 310-318. MR 673805 (84e:10029)
  • [2] H. Hasse, Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkorper, J. Reine Angew. Math. 153 (1924), 113-130.
  • [3] J. S. Hsia, Representations by integral quadratic forms over algebraic number fields, Queen's Papers in Pure and Appl. Math. 46 (1977), 528-537. MR 0498377 (58:16505)
  • [4] -, On the classification of unimodular quadratic forms, J. Number Theory 12 (1980), 327-333. MR 586460 (81m:10038)
  • [5] O. T. O'Meara, Introduction to quadratic forms, Grundlehren der Math. Wiss., Springer-Verlag, New York, 1963.
  • [6] P. Revoy, Sur les sommes de carrés dans un anneau, Ann. Sci. Univ. Besançon Math. (3) 11 (1979), 3-8. MR 651967 (83d:10058)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11E12, 11R11

Retrieve articles in all journals with MSC: 11E12, 11R11

Additional Information

Keywords: Exceptional integer, genus, $ \chi $-invariant, Artin symbol
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society