Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An extension of the Hausdorff-Toeplitz theorem on the numerical range


Authors: Yik Hoi Au-Yeung and Nam-Kiu Tsing
Journal: Proc. Amer. Math. Soc. 89 (1983), 215-218
MSC: Primary 15A60; Secondary 15A51, 47A12
DOI: https://doi.org/10.1090/S0002-9939-1983-0712625-4
MathSciNet review: 712625
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\mathcal{H}_n}$ be the set of all $ n \times n$ hermitian matrices and $ {\mathcal{U}_n}$ the set of all $ n \times n$ unitary matrices. For any $ c = ({c_1}, \ldots ,{c_n}) \in {{\mathbf{R}}^n}$ and $ {A_1}$, $ {A_2}$, $ {A_3} \in {\mathcal{H}_n}$, let $ W({A_1},{A_2},{A_3})$ denote the set

$\displaystyle \{ ({\operatorname{tr}}[c]U{A_1}{U^*},{\operatorname{tr}}[c]U{A_2}{U^*},{\operatorname{tr}}[c]U{A_3}{U^*}):U \in {\mathcal{U}_n}\} ,$

where $ [c]$ is the diagonal matrix with $ {c_1}, \ldots ,{c_n}$ as diagonal entries. In this present note, the authors prove that if $ n > 2$, then $ {W_c}({A_1},{A_2},{A_3})$ is always convex. Equivalent statements of this result, in terms of definiteness and inclusion relations, are also given. These results extend the theorems of Hausdorff-Toeplitz, Finsler and Westwick on numerical ranges, respectively.

References [Enhancements On Off] (What's this?)

  • [1] Y. H. Au-Yeung and Y. T. Poon, A remark on the convexity and positive definiteness concerning hermitian matrices, Southeast Asian Bull. Math. 3 (1979), 85-92. MR 564798 (81c:15026)
  • [2] Y. H. Au-Yeung and N. K. Tsing, Some theorems on the generalized numerical ranges, Linear and Multilinear Algebra (to appear). MR 731673 (85c:15039)
  • [3] C. A. Berger, Normal dilations, Cornell Univ., Doctoral dissertation, 1963.
  • [4] F. Bohnenblust, Joint positiveness of matrices, unpublished manuscript.
  • [5] E. Calabi, Linear systems of real quadratic forms, Proc. Amer. Math. Soc. 15 (1964), 844-846. MR 0166203 (29:3480)
  • [6] P. Finsler, Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen, Comment. Math. Helv. 9 (1936/37), 188-192. MR 1509554
  • [7] S. Friedland and R. Loewy, Subspaces of symmetric matrices containing matrices with a multiple first eigenvalue, Pacific J. Math. 62 (1976), 389-399. MR 0414597 (54:2698)
  • [8] M. Goldberg and E. G. Straus, Elementary inclusion relations for generalized numerical ranges, Linear Algebra Appl. 18 (1977), 1-24. MR 0485933 (58:5727)
  • [9] P. Halmos, A Hilbert space problem book, Von Nostrand, New York, 1967. MR 0208368 (34:8178)
  • [10] F. Hausdorff, Der Wertvorrat einer Bilinearform, Math. Z. 3 (1919), 314-316. MR 1544350
  • [11] Y. T. Poon, Another proof of a result of Westwick, Linear and Multilinear Algebra 9 (1980), 35-37. MR 586669 (81h:15015)
  • [12] O. Toeplitz, Das algebraishe Analogon zu einum Satze von Fejér, Math. Z. 2 (1918), 187-197. MR 1544315
  • [13] R. Westwick, A theorem on numerical ranges, Linear and Multilinear Algebra 2 (1975), 311-315. MR 0374936 (51:11132)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A60, 15A51, 47A12

Retrieve articles in all journals with MSC: 15A60, 15A51, 47A12


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0712625-4
Keywords: Numerical range, convexity, doubly-stochastic matrix, convex hull
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society