Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Two Tauberian theorems for nonconvolution Volterra integral operators

Author: Gustaf Gripenberg
Journal: Proc. Amer. Math. Soc. 89 (1983), 219-225
MSC: Primary 45D05; Secondary 40E05
MathSciNet review: 712626
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two sets of sufficient conditions on the kernel $ k(t,s)$ are given so that one can prove that if $ x$ is a bounded function such that

$\displaystyle \mathop {\lim }\limits_{\begin{array}{*{20}{c}} {t \to \infty } \... ...text{and}}\quad \mathop {\lim }\limits_{t \to \infty } \int_0^t {k(t,s)x(s)ds} $

exists, then $ {\lim _{t \to \infty }}x(t)$ exists.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 45D05, 40E05

Retrieve articles in all journals with MSC: 45D05, 40E05

Additional Information

Article copyright: © Copyright 1983 American Mathematical Society