Realizability and nonrealizability of Dickson algebras as cohomology rings

Authors:
Larry Smith and R. M. Switzer

Journal:
Proc. Amer. Math. Soc. **89** (1983), 303-313

MSC:
Primary 55R40; Secondary 55R35

MathSciNet review:
712642

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Fix a prime and let be an -dimensional vector space over . The general linear group of acts on the polynomial ring on . The ring of invariants has been computed by Dickson, and we denote it by . If we grade by assigning the elements of the degree 2, then becomes a graded polynomial algebra on generators of degrees . The Steenrod algebra acts on in a unique way compatible with the unstability condition and the Cartan formula. The action commutes with the Steenrod algebra action, and so inherits the structure of an unstable polynomial algebra over the Steenrod algebra. In this note we determine explicit formulas for the action of the Steenrod algebra on the polynomial generators of . As a consequence we are able to decide exactly which Dickson algebras can be cohomology rings.

**[1]**J. F. Adams,*On the non-existence of elements of Hopf invariant one*, Ann. of Math. (2)**72**(1960), 20–104. MR**0141119****[2]**J. F. Adams and C. W. Wilkerson,*Finite 𝐻-spaces and algebras over the Steenrod algebra*, Ann. of Math. (2)**111**(1980), no. 1, 95–143. MR**558398**, 10.2307/1971218**[3]**Allan Clark and John Ewing,*The realization of polynomial algebras as cohomology rings*, Pacific J. Math.**50**(1974), 425–434. MR**0367979****[4]**Leonard Eugene Dickson,*A fundamental system of invariants of the general modular linear group with a solution of the form problem*, Trans. Amer. Math. Soc.**12**(1911), no. 1, 75–98. MR**1500882**, 10.1090/S0002-9947-1911-1500882-4**[5]**John Ewing,*Sphere bundles over spheres as loop spaces 𝑚𝑜𝑑𝑝*, Duke Math. J.**40**(1973), 157–162. MR**0324690****[6]**Eric M. Friedlander,*Exceptional isogenies and the classifying spaces of simple Lie groups*, Ann. Math. (2)**101**(1975), 510–520. MR**0391078****[7]**J. R. Hubbuck,*Generalized cohomology operations and 𝐻-spaces of low rank*, Trans. Amer. Math. Soc.**141**(1969), 335–360. MR**0248809**, 10.1090/S0002-9947-1969-0248809-9**[8]**R. Holzsager,*𝐻-spaces of category ≤2*, Topology**9**(1970), 211–216. MR**0261598****[9]**Serge Lang,*Algebra*, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR**0197234****[10]**Arunas Liulevicius,*The factorization of cyclic reduced powers by secondary cohomology operations*, Mem. Amer. Math. Soc. No.**42**(1962), 112. MR**0182001****[11]**John Milnor,*The Steenrod algebra and its dual*, Ann. of Math. (2)**67**(1958), 150–171. MR**0099653****[12]**John W. Milnor and John C. Moore,*On the structure of Hopf algebras*, Ann. of Math. (2)**81**(1965), 211–264. MR**0174052****[13]**Ryosuke Nakagawa and Shōji Ochiai,*On the dimension of generators of a polynomial algebra over the 𝑚𝑜𝑑𝑝 Steenrod algebra*, Proc. Japan Acad.**43**(1967), 932–936. MR**0231372****[14]**Larry Smith,*On the type of an associative 𝐻-space of rank two*, Tôhoku Math. J. (2)**20**(1968), 511–515. MR**0243523****[15]**L. Smith and R. M. Switzer,*Variations on a theme of Adams and Wilkerson*(to appear).**[16]**N. E. Steenrod,*Cohomology operations*, Lectures by N. E. STeenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. MR**0145525****[17]**Dennis Sullivan,*Genetics of homotopy theory and the Adams conjecture*, Ann. of Math. (2)**100**(1974), 1–79. MR**0442930****[18]**A. Zabrodsky,*On the realization of invariant subgroups of*, revised preprint.**[19]**Oscar Zariski and Pierre Samuel,*Commutative algebra. Vol. II*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR**0120249**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55R40,
55R35

Retrieve articles in all journals with MSC: 55R40, 55R35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0712642-4

Article copyright:
© Copyright 1983
American Mathematical Society