Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A theorem on the cardinality of $ \kappa $-total spaces

Author: R. M. Stephenson
Journal: Proc. Amer. Math. Soc. 89 (1983), 367-370
MSC: Primary 54A25; Secondary 54D10, 54G20
MathSciNet review: 712653
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Throughout this article, $ \kappa $ denotes an arbitrary infinite cardinal number. In 1979, A. A. Gryzlov strengthened a well-known result of A. V. Arhangel'skii by proving that every compact $ {T_1}$-space of pseudocharacter $ \kappa $ has cardinality $ \leqslant {2^\kappa }$. Using techniques similar to Gryzlov's, we prove that every $ {2^\kappa }$-total, $ {T_1}$-space of pseudocharacter $ \leqslant \kappa $ is compact and hence of cardinality $ \leqslant {2^\kappa }$. Some related results and examples are given.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54A25, 54D10, 54G20

Retrieve articles in all journals with MSC: 54A25, 54D10, 54G20

Additional Information

Keywords: Initially $ \kappa $-compact spaces, $ \kappa $-total spaces
Article copyright: © Copyright 1983 American Mathematical Society