A composition theorem for -codes

Author:
C. H. Yang

Journal:
Proc. Amer. Math. Soc. **89** (1983), 375-378

MSC:
Primary 94B60; Secondary 05A19, 05B20

DOI:
https://doi.org/10.1090/S0002-9939-1983-0712655-2

MathSciNet review:
712655

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If Golay complementary sequences (or equivalently a two-symbol -code) of length and a Turyn -code of length exist then four-symbol -codes of length can be composed. Therefore new families of Hadamard matrices of orders and can be constructed, where for odd or (all , , , , , and ), and is the order of Williamson matrices.

**[1]**C. H. Yang,*Hadamard matrices and**-codes of length*, Proc. Amer. Math. Soc.**85**(1982), 480-482. MR**656128 (84i:05033)****[2]**-,*Hadamard matrices, finite sequences, and polynomials defined on the unit circle*, Math. Comp.**33**(1979), 688-693. MR**525685 (80i:05024)****[3]**R. J. Turyn,*Hadamrd matrices, Baumert-Hall units, four symbol sequences, pulse compression, and surface wave encodings*, J. Combin. Theory Ser. A**16**(1974), 313-333. MR**0345847 (49:10577)****[4]**-,*Computation of certain Hadamard matrices*, Notices Amer. Math. Soc.**20**(1973), A-1.**[5]**A. C. Mukhopadyay,*Some infinite classes of Hadamard matrices*, J. Combin. Theory Ser. A**25**(1978); 128-141. MR**509438 (80c:05046)****[6]**A. V. Geramita and J. Seberry,*Orthogonal designs*, Dekker, New York, 1979. MR**534614 (82a:05001)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
94B60,
05A19,
05B20

Retrieve articles in all journals with MSC: 94B60, 05A19, 05B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0712655-2

Article copyright:
© Copyright 1983
American Mathematical Society