A GLOSS ON A THEOREM OF FURSTENBERG

LESTER E. DUBINS1

Abstract. Certain refinements are offered for Furstenberg's ergodic-theoretic version of Szemeredi's theorem.

Furstenberg [1977] has proven a significant generalization of a theorem of Poincaré, which, with no real loss, can be formulated thus: If \(k \) is a positive integer and \(B_1, B_2, \ldots \) is a stationary sequence of events of positive probability in a countably additive probability space, then there is a \(k \)-progression, \(K \), such that
\[
B_K = \bigcap_{k \in K} B_k
\]
has positive probability. (A \(k \)-progression is a set of \(k \) integers of the form \(\{a, a + b, a + 2b, \ldots, a + (k - 1)b\} \) with \(a > 0, b > 0 \).)

The present paper observes that neither the hypothesis of countable additivity nor of stationarity is needed. Moreover, the probability of \(B_K \) can be bounded from below by a \(\delta > 0 \) which depends only on \(k \) and \(p = P(B_1) \). These facts are immediate corollaries to:

Theorem 1. Let \(p > 0 \) and let \(k \) be a positive integer. Then there is a \(\delta > 0 \) and a positive integer \(n \) such that, for every \(n \)-tuple of events \(B_1, \ldots, B_n \) of average probability at least \(p \), there is a \(k \)-progression \(K \subset \{1, \ldots, n\} \) for which \(\bigcap B_i (i \in K) \) has probability at least \(\delta \).

This form of Furstenberg's theorem follows by an argument which he chose not to provide in [1977]. Indeed, it is a simple consequence of Szemeredi's theorem [1975] on the existence of arbitrarily long arithmetic sequences in each set of integers of positive density. But it is convenient first to provide a trivial lemma.

Lemma 1. Let \(B_1, \ldots, B_n \) be events of average probability at least \(p \) and let \(l \) be a positive integer less than \(n \). Then there is a subset \(X \) of \(\{1, \ldots, n\} \) of cardinality \(l \) such that
\[
P(\bigcap_{i \in X} B_i) \geq \left(p - \frac{l}{n}\right) \frac{n}{l}.
\]

Proof of Lemma 1. Let \(Y \) be the number of \(B \) that occur. Since \(Y \) is at most \(n \) on the event \((Y \geq l) \) and is at most \(l - 1 \) on its complement, the following inequality (sharp) is easily obtained.
\[
P(Y \geq l) \geq \left(\frac{PY}{n} - \frac{l - 1}{n}\right) \left(1 - \frac{l - 1}{n}\right)^{-1}.
\]
(In (2), the precision (expectation) of Y is designated by PY as accords with a notational innovation of de Finetti.)

For the purposes of this note, this weaker inequality suffices:

$$P(Y > l) \geq \frac{PY}{n} - \frac{l}{n}.$$

Plainly, the event $Y > l$ is the union of the events $\cap B_i (i \in X)$ as X ranges over $[n]^l$, the subsets of $\{1, \ldots, n\}$ of cardinality l. Therefore,

$$P(Y > l) \leq \sum P(\cap B_i (i \in X)) \leq \left(\frac{n}{l}\right) \max P(\cap B_i (i \in X)),$$

as X ranges over $[n]^l$. So, for some $X \in [n]^l$,

$$P(\cap B_i (i \in X)) \geq P(Y > l) \geq \left(\frac{PY}{n} - \frac{l}{n}\right) \left(\frac{n}{l}\right) \geq \left(p - \frac{l}{n}\right) \left(\frac{n}{l}\right),$$

where the second inequality obtains in view of (3), and the third by hypothesis.

Let $\gamma_k(n)$ be the least integer l such that, if X is a subset of $\{1, \ldots, n\}$ of cardinality l, then X includes a k-progression. Szemeredi [1975] has shown that $\gamma_k(n)/n$ converges to 0 as $n \to \infty$.

Proof of Theorem 1. By Szemeredi’s theorem, there is an $n = n(p, k)$ such that $\gamma_k(n) < np/2$. For $l = \gamma_k(n)$, let $\delta = p/2\gamma_k(n)$. That (δ, n) satisfies Theorem 1 can be verified, thus. Let B_1, \ldots, B_n be events of average possibility at least p. By Lemma 1, there is an $X \subset \{1, \ldots, n\}$ of cardinality l such that (1) holds. Since $l/n < p/2$, the right-hand side of (1) is at least δ. So $\cap B_i (i \in X)$ has probability no less than δ. Since X is of cardinality $\gamma_k(n)$, X includes a k-progression, K. Plainly, $\cap B_i (i \in K)$ includes $\cap B_i (i \in X)$. So it, too, has probability no less than δ.

References

Department of Mathematics, University of California, Berkeley, California 94720