On the existence of nonsimple real eigenvalues for general Sturm-Liouville problems

Author:
A. B. Mingarelli

Journal:
Proc. Amer. Math. Soc. **89** (1983), 457-460

MSC:
Primary 34B25

DOI:
https://doi.org/10.1090/S0002-9939-1983-0715866-5

MathSciNet review:
715866

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Sturm-Liouville eigenvalue problem , , where is required to satisfy a pair of homogeneous separated boundary conditions at , is considered when no sign restrictions are imposed upon the coefficients , . It will be shown that the general eigenvalue problem above can admit at most finitely many nonsimple real eigenvalues (in some cases none at all). Moreover, we will show by means of an example that nonsimple real eigenvalues may occur in the case when each of and changes sign in and under Dirichlet boundary conditions.

**[1]**F. V. Atkinson and A. B. Mingarelli, private correspondence.**[2]**R. Courant and D. Hilbert,*Methods of mathematical physics*, Vol. 1, Interscience, New York, 1953. MR**0065391 (16:426a)****[3]**E. Ince,*Ordinary differential equations*, Dover, New York, 1956. MR**0010757 (6:65f)****[4]**A. B. Mingarelli,*Some remarks on the order of an entire function associated with a second order differential equation*, (Tribute to F. V. Atkinson, Proc. Sympos. on Differential Operators, Dundee, Scotland, March-April-May 1982), Lecture Notes in Math., Springer-Verlag, Berlin and New York (to appear). MR**742651****[5]**-,*Indefinite Sturm-Liouville problems*, Lecture Notes in Math.,Vol. 964, Springer-Verlag, Berlin and New York, 1983, pp. 519-528. MR**693136 (84f:34037)****[6]**R. G. D. Richardson,*Contributions to the study of oscillation properties of the solutions of linear differential equations of the second order*, Amer. J. Math.**40**(1918), 283-316. MR**1506360**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34B25

Retrieve articles in all journals with MSC: 34B25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0715866-5

Keywords:
Sturm-Liouville problems,
nonsimple eigenvalues

Article copyright:
© Copyright 1983
American Mathematical Society