ON PARTITIONS OF PLANE SETS INTO SIMPLE CLOSED CURVES. II

PAUL BANKSTON

Abstract. We answer some questions raised in [1]. In particular, we prove: (i) Let F be a compact subset of the euclidean plane E^2 such that no component of F separates E^2. Then $E^2 \setminus F$ can be partitioned into simple closed curves iff F is nonempty and connected. (ii) Let $F \subseteq E^2$ be any subset which is not dense in E^2, and let S be a partition of $E^2 \setminus F$ into simple closed curves. Then S has the cardinality of the continuum. We also discuss an application of (i) above to the existence of flows in the plane.

Statement of results. This note is a sequel to [1], whose notation and terminology we follow faithfully. Throughout the paper, F is a subset of the euclidean plane E^2, and \mathcal{S} is an alleged partition of $E^2 \setminus F$ into simple closed curves (scc's) (i.e. \mathcal{S} is a cover of $E^2 \setminus F$ by pairwise disjoint topological replicas of the unit circle). We are interested in two kinds of question: (i) (existential) what conditions on F ensure or prohibit the existence of a partition \mathcal{S}; and (ii) (spectral) what are the relationships between F and the set of cardinalities of possible partitions \mathcal{S}?

Existence questions are considered in [1, 2]. We summarize what we know: If the cardinality $|F|$ of F is less than the continuum c, and if either the number of isolated points of F or the number of cluster points of F (in E^2) is finite, then \mathcal{S} exists iff $|\mathcal{S}| = 1$. We conjecture that the conclusion is still valid under the weaker hypothesis "$|F| < c$"; however, the conclusion fails when the hypothesis is weakened further to "F is totally disconnected", as is witnessed by a nice construction due to R. Fox [1, Theorem 12].

In [1] we also raise the question of when \mathcal{S} exists for F compact. This brings us to our first result.

1. Theorem. Let F be a compact subset of E^2 such that no component of F separates E^2. Then $E^2 \setminus F$ can be partitioned into scc's iff F is nonempty and connected.

Questions of spectrum are considered in [1, 2, 4]; in particular, in [1] we ask: for which F is it necessarily the case that $|\mathcal{S}| = c$ (if it exists at all)?

2. Theorem. Let F be any subset of E^2 which is not dense in E^2, and let \mathcal{S} be a partition of $E^2 \setminus F$ into scc's. Then $|\mathcal{S}| = c$.

Received by the editors December 3, 1982 and, in revised form, February 24, 1983.

1980 Mathematics Subject Classification. Primary 54B15, 57N05; Secondary 54H20.

Key words and phrases. Topological partitions, euclidean plane, simple closed curves, continuous flows.

©1983 American Mathematical Society

0002-9939/83 $1.00 + .25 per page
The proof of Theorem 1 uses techniques from [1]. The proof of Theorem 2 is inspired by H. Cook’s proof [4] that every partition of E^2 into closed arcs must have cardinality c.

Proof of Theorem 1. Our first observation (due to the referee of [1]) is that the components of F, together with singleton points of $E^2 \setminus F$, form an uppersemicontinuous decomposition of E^2. By a theorem of R. L. Moore [6, p. 533] the corresponding quotient space is $\approx E^2$. In view of this it is easy to get the existence of \mathcal{S} whenever F is a nonempty continuum which fails to separate E^2, so it will suffice to prove

3. **Theorem.** Let $F \subseteq E^2$ be a compact totally disconnected subset of cardinality different from 1. Then $E^2 \setminus F$ cannot be partitioned into scc’s.

We can eliminate the case $F = \emptyset$ immediately [1, Theorem 1], so assume $|F| > 1$; and, for the sake of contradiction, let \mathcal{S} be a partition of $E^2 \setminus F$ into scc’s. As in [1] we let $B(S)$ be the bounded component of $E^2 \setminus S$ for any scc S and rely heavily on Schönflies’s theorem (i.e. $B(S) = E^2$). Also we will use the partial order $<$ on \mathcal{S}, given by $S_1 < S_2$ if $B(S_1) = B(S_1) \cup S_1 \subseteq B(S_2)$.

4. **Lemma.** If F is totally disconnected and $\mathcal{M} \subseteq \mathcal{S}$ is a maximal chain, then $\bigcap \{B(S): S \in \mathcal{M}\}$ is a singleton subset of F.

Proof. This is proved in [1, Lemma 4]. □

Now for any $S \in \mathcal{S}$, $B(S) \cap F$ is a nonempty clopen subset of F, so for each clopen $G \subseteq F$ let $S_G = \{S \in \mathcal{S}: B(S) \cap F = G\}$. Then $\mathcal{S} = \bigcup \{S_G: G \subseteq F \text{ is clopen}\}$ is a (countable) union of pairwise disjoint subcollections, each of which is a chain under the $<$ -ordering. Let $U_G = \bigcup S_G$. Then the collection $\{U_G: G \subseteq F \text{ is clopen}\}$ is a cover of $E^2 \setminus F$ by pairwise disjoint sets (“annuli”). We will show that each U_G is open. By a theorem of Kuratowski-Knaster [7], to the effect that X separates E^2 only if a connected subset of X separates E^2, we know that $E^2 \setminus F$ is connected. Hence, $U_G = \emptyset$ for all but one clopen $G \subseteq F$. We will show that, in fact, $S_F \neq \emptyset$, hence $\mathcal{S} = \mathcal{M}$. This will mean that \mathcal{S} is a chain all of whose members enclose F, contradicting Lemma 4.

We will be done, therefore, once we prove the following two assertions.

5. **Lemma.** $S_F \neq \emptyset$.

Proof. Although we could argue as in the proof of [1, Lemma 9], the following approach (suggested by the referee) is more elementary.

View E^2 as $S^2 \setminus \{p\}$ (i.e. the two-sphere minus the point at infinity); and for each scc $S \subseteq E^2$ let $U(S)$ be the complement of $B(S) \cup S$ in S^2. Since the collection of $<$ -maximal elements of \mathcal{S} is at most countable and each chain in \mathcal{S} without a $<$ -maximal element has countable cofinality, we can find a countable collection S_1, S_2, \ldots in \mathcal{S} which includes the $<$ -maximal elements and such that $\bigcup_{n=1}^{\infty} B(S_n) = \bigcup \{B(S): S \in \mathcal{S}\}$. For $m = 1, 2, \ldots$, let $C_m = \bigcap_{n=1}^{m} \overline{U(S_n)}$. Then C_1, C_2, \ldots is a decreasing chain of continua containing p. Suppose $C_m \cap F \neq \emptyset$ for each m. Since F is compact, we have that $C = \bigcap_{m=1}^{\infty} C_m$ is a continuum which intersects F and...
contains p. By a theorem of Sierpiński [6, p. 173; 1, Lemma 8(ii)], to the effect that no locally compact connected Hausdorff space can be partitioned into countably many proper compact subsets, C must contain a point x not in $F \cup \{p\} \cup \bigcup_{n=1}^{\infty} S_n$. But $x \in S$ for some $S \in \mathcal{S}$, and S cannot be $<\text{-maximal}$. Thus $x \in B(S_n)$ for some n, a contradiction. Thus for some m, $F \cap C_m = \emptyset$; hence $F \subseteq \bigcup_{n=1}^{m} B(S_n)$.

For each $x \in F$ let $S_x = \{S \in \mathcal{S}: x \in B(S)\}$. By [1, Theorem 1], $\mathcal{S} = \bigcup_{x \in F} S_x$, and each S_x is a chain. Let $G_x = \bigcup \{B(S): S \in \mathcal{S}_x\}$. By the above argument, $x \in G_x \subseteq H_x$ is a closed disk if S_x has a $<\text{-maximal}$ element, and G_x is a chain union of open disks if S_x has no $<\text{-maximal}$ element. Furthermore, the collection $\{G_x: x \in F\}$ is a finite partition of E^2. But the complement of a finite nontrivial union of disjoint closed disks is multiply connected. Hence $G_x = E^2$ for each $x \in F$ and $F \subseteq B(S)$ for some $S \in \mathcal{S}$. \square

Proof. Let $G \subseteq F$ be clopen and assume $S_G \neq \emptyset$. Since S_G is a chain it will suffice to show that S_G has no $<\text{-minimal}$ or $<\text{-maximal}$ element. Let $S \in S_G$. Since $B(S) \approx E^2$ and G is compact, we can apply Lemma 5 relativized to $B(S)$. Thus, there is a scc $S' \in S$ with $G \subseteq B(S') \subseteq B(S') \subseteq B(S)$. Clearly $S' \in S_G$, so S_G has no $<\text{-minimal}$ element.

To see that S_G has no $<\text{-maximal}$ element, we “exchange” the point p at infinity for any element of G. (G is nonempty.) The ordering $<$ is reversed and we apply the above argument to the compact set $(F \setminus G) \cup \{p\}$. This finishes the proof of the lemma, and hence of Theorem 1. \square

Proof of Theorem 2. Suppose F is a subset of E^2 which is not dense in E^2, and let \mathcal{S} be a partition of $E^2 \setminus F$ into scc’s. Let D be a standard open disk with boundary circle C such that $D \cap F = \emptyset$. Then no $S \in \mathcal{S}$ lies in D [1, Theorem 1]; so for each $S \in \mathcal{S}$, $S \cap D$ is a countable disjoint union of open arcs with distinct endpoints on C. Since these arcs form a partition of D and each such arc is a subarc of a member of \mathcal{S}, it will suffice to show that it takes c arcs to do the job. Let A be one of the arcs and let D_A be a component ($\approx E^2$) of $D \setminus A$. We show that c arcs are necessary to fill D_A by proving the following.

7. Lemma. Let $[0, 1]^2$ denote the closed unit square and let \mathcal{E} be a partition of the open unit square $\mathcal{O} = (0, 1)^2$ by open arcs (i.e. homeomorphs of $(0, 1)$), each with distinct endpoints on $[0, 1] \times \{0\}$. Then $|\mathcal{E}| = c$.

Proof. The following argument is similar to that given by H. Cook in [4] to show that E^2 cannot be partitioned into $< c$ closed arcs.

By the Baire Category Theorem applied to $(0, 1)^2$ (each $A \in \mathcal{E}$ is closed as well as nowhere dense in $(0, 1)^2$), we know that \mathcal{E} is uncountable; hence there is a real $\delta > 0$ and an uncountable $\mathcal{E}_0 \subseteq \mathcal{E}$ such that the endpoints of each $A \in \mathcal{E}_0$ have a distance apart of at least δ. For $A \in \mathcal{E}$, let $l(A)$ (resp. $r(A)$) denote the left (resp. right) endpoint of A, and let $B(A)$ denote the region bounded by A and $[l(A), r(A)] \times \{0\}$. We order \mathcal{E} by writing $A_1 \prec A_2$ if $B(A_1) \subseteq B(A_2)$ and $A_1 \neq A_2$. Now suppose n is any whole number such that $n\delta > 1$. Then \mathcal{E}_0 has at most n maximal chains under
<. (This follows from the fact that < is a tree ordering; hence, if there were > n maximal chains in \(\mathcal{A}_0 \), then there would be > n arcs \(A \in \mathcal{A}_0 \) such that the regions \(B(A) \) are pairwise disjoint. Since their endpoints have a distance apart of \(\geq \delta \), this is impossible.) Thus there is an uncountable \(\mathcal{A}_1 \subseteq \mathcal{A}_0 \) which is a chain under the < -order. Assume \(|\mathcal{A}_1| < c \), and let \(\mathcal{C} \) denote the space of subcontinua of \([0, 1]^2\). Under the well-known Hausdorff metric, \(\mathcal{C} \) is a compact metric space. Let \(\mathcal{A}_1 \) denote the closure of \(\mathcal{A}_1 \) in \(\mathcal{C} \). Then \(|\mathcal{A}_1| = c \). (To see this we use the facts that \(\mathcal{C} \) is hereditarily Lindelöf, and in such spaces scattered subsets are countable. Since \(\mathcal{A}_1 \) is uncountable it is not scattered; hence, it has a nonempty closed subset without isolated points. This subset, being also compact metric, contains Cantor sets.)

Since we are assuming \(|\mathcal{A}_1| < c \), we have \(|\mathcal{A}_1 \setminus \mathcal{A}_1| = c \). Also, since \(\mathcal{A}_1 \) is a chain, each element of \(\mathcal{A}_1 \setminus \mathcal{A}_1 \) is a limit either from above or below of distinct arcs in \(\mathcal{A}_1 \), say \(B = \lim_{n \to \infty} A_n \) where \(A_{n+1} < A_n \). Hence, \(B \) intersects at most one arc in \(\mathcal{A}_1 \) and at most one other continuum in \(\mathcal{A}_1 \). Let
\[
 r = \inf \{r(A): A \in \mathcal{A}_1 \}, \quad l = \sup \{l(A): A \in \mathcal{A}_1 \},
\]
and let \((a, 0) \) be the midpoint of the segment \([l, r] \times \{0\} \) \((r - l \geq \delta) \). Let \(L \) be the vertical segment \(\{a\} \times [0, 1] \). Then each \(B \in \mathcal{A}_1 \) intersects both \([0, a] \times \{0\}\) and \([a, 1] \times \{0\}\). Let \(f: (\mathcal{A}_1 \setminus \mathcal{A}_1) \to L \) take a continuum \(B \) to a point of \(B \cap (L \setminus \{(a, 0)\}) \). Then the image \(f(\mathcal{A}_1 \setminus \mathcal{A}_1) \) has cardinality \(c \) since the fibers of \(f \) have at most two elements.

Finally, it is plain that if \(x_1, x_2, x_3 \) are three distinct points of \(f(\mathcal{A}_1 \setminus \mathcal{A}_1) \) then some arc of \(\mathcal{A}_1 \) separates two of them in \([0, 1]^2\). Thus no member of the original family \(\mathcal{A} \) can contain more than two points of \(L \). Since every point of \(f(\mathcal{A}_1 \setminus \mathcal{A}_1) \) lies on exactly one arc in \(\mathcal{A}_1 \), this says that \(|\mathcal{A}_1| = c \). \(\square \)

8. Remark. Theorem 2 contrasts nicely with the fact \([5, 9]\) that, under hypotheses consistent with the usual axioms of set theory, \(E^2 \) can be covered by < \(c \) (possibly overlapping) scc's.

An application to the theory of flows. In this section we follow the terminology found in Beck [3]. A flow in \(E^2 \) is a continuous surjection \(f: E^1 \times E^2 \to E^2 \) with the "group property" \(f(s + t, x) = f(s, f(t, x)) \). We define a flow to be periodic if for each \(x \in E^2 \), either \(x \) is a fixed point of \(f \) (i.e. \(f(t, x) = x \) for all \(t \in E^1 \)) or \(p_f(x) = \inf \{t > 0: f(t, x) = x \} \) is finite and positive. It is an easy exercise (see [3]) to show that \(x \) is a fixed point iff \(p_f(x) = 0 \); and the orbit of \(x \), \(\{f(t, x): t \in E^1\} \), is a scc iff 0 < \(p_f(x) < \infty \).

9. Theorem (Beck [3, Corollary 6.20]). Let \(F \subseteq E^2 \) be a compact set whose complement is homeomorphic with the open annulus \(\{x \in E^2: 1 < |x| < 2\} \). Then there exists a periodic flow on \(E^2 \) whose set of fixed points is \(F \).

Let \(F \subseteq E^2 \) be nonempty and compact, such that both \(F \) and \(E^2 \setminus F \) are connected. Letting \(\mathcal{A}_F \) be the uppersemicontinuous decomposition of \(E^2 \) into \(F \) together with singletons of \(E^2 \setminus F \), we have immediately from Moore's theorem (i.e. \(E^2 / \mathcal{A}_F \approx E^2 \)) that \(E^2 \setminus F \) is homeomorphic with an open annulus. Putting Theorem 9 and our Theorem 1 together we have the following existence theorem for flows.
10. **Theorem.** Let $F \subseteq E^2$ be compact, no component of which separates E^2. The following are equivalent:

(i) F is nonempty and connected.

(ii) There exists a periodic flow on E^2 whose fixed point set is F.

11. **Remark.** The (ii) \Rightarrow (i) direction is a very weak corollary of Theorem 1, which in effect offers a “static” (rather than “dynamic”) argument for the nonexistence of flows.

References

Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, Wisconsin 53233