EMBEDDING COSMIC SPACES IN LUSIN SPACES

AMER BEŠLAGIĆ

Abstract. We show that every regular cosmic space can be embedded in a Lusin space. This answers a question posed by J. P. R. Christensen.

In his book [2], J. P. R. Christensen asks the following question: Can a regular cosmic space be embedded in an analytic space?

The purpose of this note is to give a positive answer to that question. The answer was also obtained by Gary Gruenhage and by Calbrix [1].

For undefined terminology we refer the reader to [4]. By regular we mean T_3. A T_0 space is called cosmic if it is a continuous image of a separable metric space. Michael [7] defined cosmic spaces and proved the following theorem.

Theorem 0. A T_0 space is cosmic if and only if it has a countable network.

A network for a space X is a family \mathcal{N} of subsets of X (not necessarily open) such that for every $x \in X$ and open U containing x there is an $N \in \mathcal{N}$ with $x \in N \subseteq U$.

A T_2 space X is called analytic if it is a continuous image of a complete separable metric space. A T_2 space X is called Lusin if it is a one-to-one continuous image of a complete separable metric space.

A centered system is a family of sets with the finite intersection property, and a centered system on a family \mathcal{N} is a centered system whose members belong to \mathcal{N}. A centered system \mathcal{F} of subsets of a space X converges to a point x of X if every neighbourhood of x contains an element of \mathcal{F}. Let $\mathcal{N} \subseteq \mathcal{P}(X)$, then for $A \subseteq X$ define $[A]_{\mathcal{N}} = \{x \in X : \text{there is a maximal centered system } \mathcal{F} \text{ on } \mathcal{N} \text{ which contains } A \text{ such that } \mathcal{F} \text{ converges to } x \}$.

A family $\mathcal{N} \subseteq \mathcal{P}(X)$ is convergent if every maximal centered system \mathcal{F} on \mathcal{N} converges to some point x such that for any neighbourhood U of x there is an $A \in \mathcal{F}$ such that $[A]_{\mathcal{N}} \subseteq U$.

Theorem 1. A T_2 space X is analytic if and only if it has a countable convergent network.

Proof. Suppose $\mathcal{N} = \{N_n : n \in \omega\}$ is such a network. Without loss of generality we may assume that \mathcal{N} is closed under finite intersections. For $x \in X$ let \mathcal{F}_x denote a maximal centered system on \mathcal{N} such that $\{N \in \mathcal{N} : x \in N\} \subseteq \mathcal{F}_x$. Choose $f_x \in \omega^\omega$ by the rules

$$f_x(n) = n \quad \text{if } N_n \in \mathcal{F}_x,$$

otherwise

$$f_x(n) = \min\{k : N_k \cap N_n = \emptyset \& N_k \in \mathcal{F}_x\}.$$
The closure M of $\{f_x : x \in X\}$ in $ω$ is a complete separable metric space. If $f \in M$, then $\{N_{f(i)} : i \in ω\}$ is a centered system on N and there is a maximal centered system F_f extending it. By assumption, F_f converges to say $x_f \in X$. We claim the map $f \mapsto x_f$ is continuous. Thus X is analytic, for the fact that X is T_2 assures us that $x_{f_x} = x$, and thus the map is onto.

To prove the claim, suppose $x_f \in U$ which is open in X. There is an n with $x_f \in [N_n]_U \subset U$ and $N_n \in F_f$. If $f(n) = i \neq n$ then there is $x \in X$ with $f(n) = f_x(n)$ so $N_i \cap N_n = \emptyset$, a contradiction. So $\{g \in M : g(n) = n\}$ is an open set in M containing f and we claim that $\{x_g : g(n) = n\} \subset U$, proving that $f \mapsto x_f$ is continuous. But F_g converges to x_g and $N_n \in F_f$ so $x_g \in [N_n]_U$.

Going the other way assume $f : M \to X$ is continuous for some complete separable metric space M and T_2 space X. For each $x \in X$ choose $x' \in f^{-1}(x)$ and let M' be the closure in M of $\{x' : x \in X\}$. For each $n \in ω$ choose a star finite cover B_n of M' by closed sets of diameter $< 1/2^n$. Let $B = \bigcup_{n \in ω} B_n$. For $B \in B$ let $B' = \{x' : x \in X\}$ and $N = \{f(B') : B \in B\}$.

1°. N is a network for X: If $x \in U$ which is open in X, choose $B \in B$ with $x' \in f^{-1}(U)$. Then $f(B') \subset U$ so N is a network.

2°. N is convergent: If F is a maximal centered system on N then $\{B : f(B') \in F\}$ is a centered system and there is a (unique) $p \in \bigcap \{B : f(B') \in F\}$ since each $B \in B_i$ has diameter $< 1/2^i$ and meets only finitely many other members of B_i and the metric is complete. We claim that F converges to $f(p)$ and that for any neighbourhood U of $f(p)$ there is an $A \in F$ so that $[A]_N \subset U$. To prove that, choose $B \subset f^{-1}(U)$ with $f(B') \in F$. If $x \in [f(B')]_N$ there is $q \in M$ so that $q \in B$ and $f(q) = x$ so $[f(B')]_N \subset f(B) \subset U$.

The inner characterization of regular analytic spaces is a bit simpler.

Corollary. A regular space X is analytic if and only if it has a countable network N such that every maximal centered system on N converges.

Remark. Let us mention that Theorem 1 remains true if in the definitions before it one writes infinite instead of maximal. This new version of Theorem 1 seems to be more useful. For example, Hurewicz proved: A metrizable analytic space Y is $σ$-compact if and only if it does not contain a closed copy of the irrationals [5, p. 100], in a rather indirect way. One can use the new version of Theorem 1 to give a short alternative direct proof. In fact, that proof only requires Y to be regular (cf. also [3, Lemma 8.8] for another direct proof of the above).

From Theorem 1 one can easily derive an answer to Christensen’s question, but we can prove a bit more.

Let us call a network N complemented if $X - N$ is the union of members of N for every $N \in N$.

Theorem 2. A T_2 space X is Lusin if and only if X has a countable complemented network N such that every centered system on N has an intersection in X.

Proof. Suppose that $f : M \to X$ is continuous and one-to-one for some complete separable metric space M and T_2 space X. For each $n \in ω$ choose a countable star finite closed cover B_n of M by sets of diameter $< 1/2^n$. Let $B = \bigcup_{n \in ω} B_n$ and $N = \{f(B) : B \in B\}$. Since f is continuous and one-to-one and B is complemented,
\mathcal{N} is a complemented network. If \mathcal{F} is a centered system on \mathcal{N} then $\mathcal{F}' = \{B \in \mathcal{B} : f(B) \in \mathcal{F}\}$ is also centered and there is a $y \in \bigcap \mathcal{F}'$. But $f(y) \in \bigcap \mathcal{F}$. Thus \mathcal{N} is as desired.

Going the other way, assume that $\mathcal{N} = \{N_n : n \in \omega\}$ is a complemented network for X and every centered system on \mathcal{N} has a nonempty intersection. If $x \in X$, define $f_x \in \omega^\omega$ by the rules

$$f_x(n) = n \quad \text{if } x \in N_n \quad \text{and} \quad f_x(n) = \min\{i : \text{N}_i \cap N_n = \emptyset \& x \in N_i\} \quad \text{if } x \notin N_n.$$

Since \mathcal{N} is complemented this is possible.

Suppose $M = \{f_x : x \in X\}$ and $f \in \bar{M}$. Then $\{N_{f(n)} : n \in \omega\}$ is a centered system on \mathcal{N} and, by assumption, there is $x \in \bigcap_{n \in \omega} N_{f(n)}$. We claim that $f = f_x$. For suppose $f(n) \neq f_x(n)$ for some n if $j = f_x(n)$, there is $y \in X$ with $f_y(n) = f(n)$ and $f_y(j) = f(j)$. Since $x \in N_j \cap N_{f(n)}$ j and $f(n)$ are minimal in $\{i : N_i \cap N_j = \emptyset\}$ for $x \in N_j$ and $y \in N_{f(j)}$ respectively. Since $x \in N_{f(j)}$, $j < f(j)$ and $y \notin N_j$. Thus $f_z(j) = j$ and $f_y(j) \neq j$; hence $N_{f_z(j)} \cap N_{f(y)} = \emptyset$ but this is impossible since $x \in N_{f_z(j)} \cap N_{f(y)}$.

Hence $f = f_x$, M is closed, and the map $f_x \mapsto x$ of M onto X is one-to-one.

This map is also continuous since if $x \in U$, open in X, $x \in N_n \subseteq U$ and $\{f \in M : f(n) = n\}$ is an open set in M, containing f_x, which is mapped into U. Thus X is Lusin.

Corollary. If X is a regular cosmic space, X can be embedded in a Lusin space.

Proof. Because of the regularity of X we can choose a closed network $\mathcal{N} = \{N_n : n \in \omega\}$ for X. Without loss of generality we may assume that \mathcal{N} is closed under finite intersections. Let X' be the space consisting of all maximal centered systems on \mathcal{N}. If U is open in X let

$$U' = \{x' \in X' : \exists N \in \mathcal{N} \cap \mathcal{N}(N \subseteq U \& N \in x')\}.$$

Every regular cosmic space is normal so sets U' form a base for a T_2 topology on X'. If $x \in X$, let $x^m = \{N \in \mathcal{N} : x \in N\}$. As \mathcal{N} is a closed network x^m is a maximal centered system on \mathcal{N}. It is easy to check that the mapping $f : X \to X'$ given by $f(x) = x^m$ is an embedding.

For $N \in \mathcal{N}$ define $N' = \{x' \in X' : N \in x'\}$, and let $\mathcal{N}' = \{N'_n : n \in \omega\}$. If \mathcal{F}' is a centered system on \mathcal{N}' then $\{N_n : N_n \in \mathcal{F}'\}$ is a centered system on \mathcal{N} so there is $x' \in \bigcap \mathcal{F}'$. If $x' \notin N'_n$ then there is an $N_m \in x'$ so that $N_m \cap N_n = \emptyset$. So $N'_m \cap N'_n = \emptyset$, hence \mathcal{N}' is a complemented network and so X' is a Lusin space.

Let us note that the assumption of regularity of X is necessary, as shown in [6], and also that the Lusin space X' is, in general, unlikely to be regular, so the question whether or not a regular cosmic space can be embedded in a regular analytic space is still open.

In closing, we would like to mention an open question involving cosmic spaces.

If ωX is hereditarily Lindelöf and hereditarily sequentially separable, is X cosmic? (A set $D \subseteq X$ is sequentially dense in X if for every $x \in X$ there is a sequence of points of D converging to x. A space X is sequentially separable if there is a countable sequentially dense $D \subseteq X$.)

Michael gives an example in [8] which shows that under CH the answer is no; Rudin [9] has proved that under CH there is a subset of the real line with the half-open-interval topology which is an example.
The author would like to express his gratitude to Professor Mary Ellen Rudin for her generous help during the preparation of this article.

REFERENCES

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706