Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Embedding cosmic spaces in Lusin spaces


Author: Amer Bešlagić
Journal: Proc. Amer. Math. Soc. 89 (1983), 515-518
MSC: Primary 54H05; Secondary 54E15, 54E65
DOI: https://doi.org/10.1090/S0002-9939-1983-0715877-X
MathSciNet review: 715877
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every regular cosmic space can be embedded in a Lusin space. This answers a question posed by J. P. R. Christensen.


References [Enhancements On Off] (What's this?)

  • [1] Jean Calbrix, Une propriété des espaces topologiques réguliers, images continues d’espaces métrisables séparables, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 2, 81–82 (French, with English summary). MR 676368
  • [2] J. P. R. Christensen, Topology and Borel structure, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Descriptive topology and set theory with applications to functional analysis and measure theory; North-Holland Mathematics Studies, Vol. 10. (Notas de Matemática, No. 51). MR 0348724
  • [3] Eric K. van Douwen, The integers and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR 776622
  • [4] Ryszard Engelking, Topologia ogólna, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna. Tom 47. [Mathematics Library. Vol. 47]. MR 0500779
    Ryszard Engelking, General topology, PWN—Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60]. MR 0500780
  • [5] W. Hurewicz, Relative perfekte Teile von Punktmengen und Mengen $ (A)$, Fund. Math. 12 (1928), 78-109.
  • [6] Brenda MacGibbon, On pre-analytic spaces, Math. Ann. 213 (1975), 257–259. MR 0358743, https://doi.org/10.1007/BF01350874
  • [7] E. Michael, ℵ₀-spaces, J. Math. Mech. 15 (1966), 983–1002. MR 0206907
  • [8] Ernest A. Michael, Paracompactness and the Lindelöf property in finite and countable Cartesian products, Compositio Math. 23 (1971), 199–214. MR 0287502
  • [9] M. E. Rudin, Handwritten notes.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H05, 54E15, 54E65

Retrieve articles in all journals with MSC: 54H05, 54E15, 54E65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0715877-X
Article copyright: © Copyright 1983 American Mathematical Society