Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Decompositions of rigid spaces


Authors: Fons van Engelen and Jan van Mill
Journal: Proc. Amer. Math. Soc. 89 (1983), 533-536
MSC: Primary 54G20; Secondary 54C99
DOI: https://doi.org/10.1090/S0002-9939-1983-0715881-1
MathSciNet review: 715881
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an example of a rigid subspace of $ {\mathbf{R}}$ which can be decomposed into two homeomorphic homogeneous parts, and of a rigid subspace of $ {\mathbf{R}}$ which can be decomposed into two homeomorphic rigid parts.


References [Enhancements On Off] (What's this?)

  • [1] F. van Engelen, A decomposition of $ {\mathbf{R}}$ into two homeomorphic rigid parts, Topolgy Appl. (to appear). MR 787953 (87g:54083)
  • [2] M. Lavrentieff, Contribution à la théorie des ensembles homéomorphes, Fund. Math. 6 (1924), 149-160.
  • [3] J. Menu, A partition of $ {\mathbf{R}}$ in two homogeneous and homeomorphic parts (to appear).
  • [4] J. van Mill, Strong local homogeneity does not imply countable dense homogeneity, Proc. Amer. Math. Soc. 84 (1982), 143-148. MR 633296 (83e:54033)
  • [5] -, Homogeneous subsets of the real line, Compositio Math. 46 (1982), 3-13. MR 660152 (83h:54048)
  • [6] J. van Mill and E. Wattel, Partitioning spaces in homeomorphic rigid parts, Colloq. Math. (to appear). MR 818090 (87d:54060)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54G20, 54C99

Retrieve articles in all journals with MSC: 54G20, 54C99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0715881-1
Keywords: Rigid, homogeneous
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society