Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A note on the stable homotopy groups of $ M{\rm Sp}(n)$


Author: Mitsunori Imaoka
Journal: Proc. Amer. Math. Soc. 89 (1983), 541-544
MSC: Primary 55N22; Secondary 55Q10, 57R20, 57R90
MathSciNet review: 715883
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The kernel of the epimorphism $ \pi _{8n + 3}^S(MSp(n)) \to {\pi _{4n + 3}}(MSp)$ is a cyclic group of order $ 8m(n + 1)$ for some integer $ m(n + 1)$ defined using the characteristic numbers of the symplectic cobordism classes, and this epimorphism splits for some $ n$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55N22, 55Q10, 57R20, 57R90

Retrieve articles in all journals with MSC: 55N22, 55Q10, 57R20, 57R90


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1983-0715883-5
PII: S 0002-9939(1983)0715883-5
Keywords: MSp, $ MSp(n)$, stable homotopy group, characteristic number, fibration
Article copyright: © Copyright 1983 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia