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SHIFTED PLANE PARTITIONS OF TRAPEZOIDAL SHAPE

ROBERT A. PROCTOR

Abstract. The number of shifted plane partitions contained in the shifted

shape [p + q — l,p + q — 3,..., p — 9 + 1] with part size bounded by mis shown

to be equal to the number of ordinary plane partitions contained in the shape

(p, p,..., p) (q rows) with part size bounded by m. The proof uses known

combinatorial descriptions of finite-dimensional representations of semisimple

Lie algebras. A separate simpler argument shows that the number of chains

of cardinality k in the poset underlying the shifted plane partitions is equal

to the number of chains of cardinality fc in the poset underlying the ordinary

plane partitions. The first result can also be formulated as an equality of chain

counts for a pair of posets. The pair of posets is obtained by taking order ideals

in the other pair of posets.

1. Introduction and results. Let p > q be two positive integers (see Figure 1). A

shifted plane partition S contained in the shifted shape [p+q — l,p+q — 3,... ,p—q+l]

(q rows) with part size bounded by m is a collection of nonnegative integers S%j, 1 <

i<Q, i<j<p + q — i, such that Sij > Si+ t,v Oi,j  > H,j+l and Sij < m. An

(ordinary) plane partition R contained in the shape (p,p,...,p) (q rows) with part

size bounded by mis a collection of nonnegative integers Rij, 1 < i < q, 1 < j < p,

satisfying the same conditions. The main result of this paper is

Theorem 1. The number of shifted partitions contained in the shifted shape

[p + q — l,p + q — 3,...,p — 9+1] with part size bounded by m is equal to the number

of ordinary plane partitions contained in the shape (p,p,..., p) (q rows) with part size

bounded by m.

l   t

p = 5,     q = h,    m =

Figure 1. Shifted and ordinary plane partitions.

There is a well-known expression for the second quantity [Mac, Example 1.5.13(b)].
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Corollary. The number of shifted plane partitions contained in the shifted

shape \p + q — l,p + q — 3,...,p — 1 + 1] with part size bounded by m is

n n n(i+j-+jfe-1).
M/iiU + J + fc-2)

It has long been known that the ordinary plane partitions of Theorem 1 describe

weights of a certain irreducible representation of the Lie algebra sl(p + q, C). More

recently, combinatorial descriptions of weights of irreducible representations of

sp(2k, C) have geen given. These combinatorial descriptions can be easily reformu-

lated in terms of shifted plane partitions. The shifted plane partitions of Theorem

1 can then be seen to correspond to the weights of a collection of irreducible rep-

resentations of sp(p + q, C) when p + q is even. (A combinatorial argument can be

used to adjust to the case of p + q being odd.) A branching rule is a description of

the decomposition of an irreducible representation of a Lie algebra into irreducible

representations of a subalgebra. Branching rules have been studied extensively in

the physics literature over the past 15 years. We will use a branching rule for

sp(2k, C) c-* sl(2k, C) due to King [Kil] to decompose the irreducible representation

of sl(p+q, C) into the desired collection of irreducible representations of sp(p+q, C).

A combinatorial description of the Littlewood-Richardson coefficients together with

a combinatorial argument are needed to apply this branching rule to the situation

at hand.

Set a = p — 1 and b = q — 1. Let Tab (T for trapezoid) denote the region of

the integral cartesian plane with coordinates (x,y) where 0 < y < b, x > y and

x < a + b — y. The extreme points of this region are (0,0), (o + b, 0), (a, b) and (b, b).

Let Pab (P for product) denote the rectangular region in the plane with extreme

points (0,0), (a, 0), (a, b) and (0, b). Give each set the usual partial order from N x N:

The maximal elements of Tab are (a + b, 0), (a + b — 1,1),..., (a, b) and the unique

maximal element of Pab is (a, b). Fix m > 0 and consider a sequence of order ideals

7i E I2 C ■ ■ • C Im in Tab(Pab)- Next to each element of Tab (Pab), write down the

number of ideals Ij in which that element occurs. It is clear that this procedure

describes a one-one correspondence between the shifted (ordinary) plane partitions

of Theorem 1 and increasing sequences Ix C h Ç ■ ■ • C Im in Tao (Pab)-

Given any poset P, let J(P) denote the lattice of order ideals of P (ordered by

inclusion). Increasing sequences h E I2 E • • • E Im of order ideals in P become

multichains of total cardinality m in J(P), or m-multichains. For any poset P, let

c(m + 1) be the number of m-multichains in P. In general, the function c(n) is a

polynomial in n, called the zeta polynomial [Ede]. Theorem 1 states that the zeta

polynomials of J(Tab) and J(Pao) are equal.

This discussion provides the backdrop for our second result.

Theorem 2. The number of m-multichains in Tao is equal to the number of

m-multichains in Pa¡,.

This result was also recently obtained by John Stembridge. Our proof uses a

simple telescoping sum argument together with an existing combinatorial formula.

The zeta polynomial of a product of two posets is the product of their zeta poly-

nomials, and the zeta polynomial of the total order on c+ 1 elements is (™_1+c).
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Corollary.   The number of m-multichains in Tab is

m + a\f m + b\

Theorem 2 states that the zeta polynomials of Tab and Pab are equal. Thus the

zeta polynomials of Tao and Pao coincide in addition to the coincidence of zeta

polynomials of J(Tab) and J(Pab)- While it may be possible to convert our proof of

Theorem 2 to a bijective proof, the question of a combinatorial correspondence for

Theorem 1 seems to be a complete mystery. Furthermore, we know of no theoretical

considerations which would lead one to suspect the truth of one of these theorems

when told of the truth of the other.

The author is indebted to Richard Stanley for news of the empirical discovery of

Theorems 1 and 2 for p = q < 4. Stanley was considering these posets because this

author had conjectured that the number of maximal chains in the weak Bruhat

order on the hyperoctahedral group of rank n + 1 was equal to the number of

extensions of Tnn to a total order, i.e. the number of shifted standard Young

tableaux on the corresponding shape. On the other hand, Stanley himself had

conjectured that the number of maximal chains was equal to the number of order

extensions of Pnn, viz. the number of ordinary standard Young tableaux on a square

shape. It is easy to use the hook and shifted hook formulas [Mac, Examples 1.5.2,

El. 7.8] to show that the number of order extensions of Pao is always equal to the

number of order extensions of Tao. (This is the equality of the highest coefficients

of the zeta polynomial identity of Theorem 1.) The poset Tnn is the order dual

of the poset of positive roots of type Bn+i (and of type Cn+i also). Further

empirical work has shown that the poset Tnn is probably the right poset to consider

for the hyperoctahedral problem. Stanley has solved the maximal chain problem

for the weak Bruhat order on the symmetric group [Sta]. His proof uses Schur

functions, which are characters of representations of the special linear group. The

representations of symplectic groups viewpoint used here may be useful for the

solution of the hyperoctahedral maximal chain problem.

2. Proof of Theorem 1. Denote the fundamental weights of a simple Lie

algebra by Ui,ai2,...,un. Let Xn(uj) denote the finite-dimensional irreducible

representation of highest weight w of the simple complex Lie algebra of type X

and rank n. The expression "indexes the weights" will be short for "indexes the

weights-with-multiplicities".

The following fact is well known [Boe, Theorem 5.3] or [Pro, proof of Proposition

7.1].

Lemma 1. Plane partitions contained in the shape (p,p,...,p)(q rows) with parts

< m index the weights of the representation Ap+q_1(mo;q).

Given an n-tuple of nonnegative integers m = (mi, rri2,..., mn), let X = (\i,...,

An), Ai > X2 > ■■■ > Xn > 0, be the partition of 2"=1 m¿¿ with m¿ columns of

length i; equivalently, Xj = X^™=j mi- ^ m and X correspond in this fashion, and if

u! = Yl7=i rniUJi> then we will also refer to the representation Cn(ui) by Cn(\).

Given a shifted plane partition S with k rows, let pi = 8%.%. Note that pi> P2>

■■■ > llk> 0. Call p the profile partition of S.
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Lemma 2. Shifted plane partitions contained in the shifted shape [2n, 2n—2,..., 2]

with profile X index the weights ofCn(\).

Proof. The tableaux of [Ki2, p. 496] corresponding to Cn(X) have shape X.

Change Ï, 1,2,...,n — l,ñ,n to 2n,2n — l,2n — 2,...,3,2,1. The entries are now

strictly decreasing along the columns (x-direction) and weakly decreasing along the

rows (y-direction), and an entry in the ith row does not exceed 2n—2i+2 (see Figure

2). Convert this (ordinary) plane partition to a solid Ferrers diagram, slide the dots

in plane x = i up i — 1 places in the z-direction, and project to the xz plane. The

resulting shifted plane partition has profile X. The process clearly reverses. This

lemma can also be proved using [Bac].

Figure 2. Lemma 2: trapezoidal shifted plane partitions

from column strict plane partitions with row bounds.

Lemma 3. Ifp + q — 1 is even, the shifted plane partitions contained in the shape

\p + q — l,p + q — 3,...,p — 9+1] (q rows) with parts < m index the weights of the

representation 0 Cn(\), where 2n = p + q — l and the direct sum is over all X with q

or fewer parts, no part exceeding m. Ifp + q — 1 is odd, the shifted plane partitions

contained in the shape [p + q —l,p + q — 3,...,p — q+ 1} with parts < m index the

weights of the representation 0 Cn(\), where 2n = p + q and the direct sum is over

all X with q or fewer parts, no part exceeding m, the length of each column o/X having

the same parity as q.

Proof. The first statement follows directly from Lemma 2 and the definition

of profile. Apply Lemma 2 to the direct sum of the second statement to obtain a

collection of shifted plane partitions contained in the shape [p + q,p + q — 2,...,p —

q + 2]. Remove the entry 5¿,¿ from the beginning of each row. View a shifted plane

partition as parallel layers of dots stacked up, each layer a shifted Ferrers diagram.

The number of rows occupied in a layer is equal to the length of the corresponding

column of the profile partition. The operation above removes the leftmost dot from

each row in each layer. If a shifted plane partition had profile X before the operation,

then each column length of the new profile X' is the same or one less than the old

column length (see Figure 3). The column lengths of X are all even or all odd,

depending upon the parity of q. Therefore all such possible (column lengths must

weakly decrease) profiles X', and all shifted plane partitions with those profiles, arise

exactly once each from the set of all shifted plane partitions with the old profile X.

Then as the direct sum runs over all profile partitions with column lengths of the
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same parity as q, the above operation will produce all profile partitions with < q

parts, each part < m, exactly once each. The new shifted plane partitions with

these profiles occur at most once each, have parts < m, and are contained in the

shape [p + q-l,p + q-2-l,...,p-q + 2-l] = [p + q-l,p + q-3,...,p-q + l].
It is clear that all such shifted plane partitions are produced by this process.

•—+~m

Stripped " |      •  •        ,  q odd,

Result     *        came      I •

from

•-- -f—•

Figure 3. Lemma 3: typical fcth layer, 1 < fc < m.

Lemma 4.   Under the inclusion map sp(2n, C) c-> sl(2n, C),

Mn-\(mur) = Ç&Cn[ J2 miüJi I      (r < n),

where the direct sum is over all m such that $3¿=o m¿ = m and ml ^ 0 implies that i is

of the same parity as r. (Set wo = 0, the highest weight of the trivial representation.)

Embed sl(2n,C) into the upper left hand corner of sl(2n + 1,C). Then under the

composed embedding sp(2n, C) <=-► sl(2n + 1, C),

A2n(mojr) = 0 CnÍJ2 m.w, (r < n),

where the direct sum is over all m such that X),=n w¿ = m, 0 < ¿ < r.

Proof. We have associated a partition X to each irreducible representation

Cn(u>). To each partition X, one can associate a Schur function s\. Given an

irreducible representation of A2n-i, King's branching rule [Kil, Equation 4.7]

produces a sum of skew Schur functions s\/ß, indexed by skew partitions X//3

[Mac, p. 4]. Upon expressing these skew Schur functions as positive integral linear

combinations of ordinary Schur functions, one finds the partitions X which occur

in the direct sum 0X Cn(X) decomposition of the original representation. The

skew partitions produced for A2n-X(mwr) are all those of the form p/ß, where

p = (m,m,...,m) (r rows), and ß has all columns of even length. (To use King's

rules, one associates a partition X to A„(w) in the same manner we have been using

for Cn(ui).) From the combinatorial descriptions of Schur and skew Schur functions

[Mac, Equation 1.5.12], it is obvious that skew Schur functions whose shapes have

straight bottom and right boundaries are just the Schur functions corresponding to

the ordinary shapes obtained by rotating the skew shapes 180° in the plane. Thus

the first part of the lemma is obtained rather easily.

Similar reasoning produces the branching rule

A2n(mujj)=   0   A2n-i(lüJj-i + kujj)
k+l=m
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from [Kil, Equation 4.5]. Use [Kil, Equation 4.7] again. Now decompose the skew

Schur functions s^/ß, where p = (m,m,...,m,k) is an r-tuple, 0 < k < m, and ß

has all columns of even length. Fix k, and let r > ß\ > ß2 > ■ ■ ■ > ß*m > 0 be the

column lengths of ß. Let g be the number of ß\ equal to r.

Claim, s^/ß = ]C\sx, where the sum is over all shapes X with column lengths

r-l-ß*m + 6m>r-l- ß*m_x + ¿Vn-i > • • • > r -1 - ß\ + & > 0, where exactly

k — g of the ¿>¿ are 1 and exactly I + g are 0.

Use the Littlewood-Richardson rule [Mac, Equations 1.9.1, 1.9.2] (see Figure 4).

Scanning p/ß in Semitic fashion, insert positive integers in the boxes of this shape

in such a way that at any step the number of i+ l's inserted so far does not exceed

the number of ¿'s inserted, and such that the entries weakly increase to the right and

strictly increase down the columns. Since the right boundary for the first r — 1 rows

is straight, within these rows the ¿th entry in a column must be an i. The entries in

the last row are any k — g nonzero numbers chosen from {r — ß\, r — ß2,..., r — ß^}

and placed in weakly increasing order. Slide boxes with entry i up to the zth row

and then left justify each row of boxes. According to Littlewood-Richardson, the

sum of the Schur functions on these shapes is the desired decomposition. For fixed

ß and k, the possible choices of the ¿\ correspond exactly to the choices of entries

for the last row of boxes in p/ß.

b

[a,b] c 12,2,4,6,6)

/Then

left

\Justify.

Figure 4. Lemma 4: applying Littlewood-Richardson to p/ß.

To complete the proof of the second part of the lemma, note that as ß runs over

all partitions with columns of even length, the partitions X produced in the claim

will exactly exhaust all partitions with < r parts, each part < m.

To prove Theorem 1 when p+q — 1 is odd, choose 2n = p + q, r = q, and combine

the first part of Lemma 4 with Lemma 1 and the second part of Lemma 3. If

p + q—1 is even, choose 2n = p + q — 1, r = q, and combine the second part of

Lemma 4 with Lemma 1 and the first part of Lemma 3. The proof of Theorem 1

is complete, by the equality of representation vector space dimensions.

3. Proof of Theorem 2. Fix a > b > 0 throughout. Let Ed(rn) be the number of

m-multichains in Tab whose maximal elements have y-coordinate d, where 0 < d <

b. Let Fu¡v(m) be the number of m-multichains in Puv with all elements lying on

or below the line x = y. By [Car, Equation 2.9] or [Ges],

Fu,v{m) =
m + u

u

m + u + l\( m + v

u + l     j\ v-l
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and

Ed(m) = Fa+b-d,d(m) - Fa+b-d,d-i(m)

Í m + a + b — d \í m + d\    Í m + a + b — d+1

~\     a+b-d     j\     d     I    \     a+b-d+l

Now the total number of m-multichains in Ta¡, is

i-r

a     l\     b

J-^      ,   ,     ( m + a\( m + b
e(m + 1) = X) Ed(m) =

d=0

by collapsing the sum. But this is just the zeta polynomial for Pab-

One can probably convert this to a bijective proof by using the nonintersecting

path viewpoint of [Ges]. To apply Gessel's techniques, convert the m-multichains

counted by FUiV(m) to 2-rowed column strict plane partitions with m columns and

with entries in the first row between 1 and u + 1, and entries in the second row

between 0 and v.
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