Uniqueness of Taylor's functional calculus
Author:
Mihai Putinar
Journal:
Proc. Amer. Math. Soc. 89 (1983), 647650
MSC:
Primary 47A60; Secondary 32C35, 46H30
MathSciNet review:
718990
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Two uniqueness results concerning Fréchet module structures over algebras of holomorphic functions defined on some complex manifolds are presented, containing as particular cases uniqueness theorems for J. L. Taylor's analytic functional calculi for commuting tuples of linear continuous operators on Fréchet spaces [7], [9]. Namely, the first statement says that the Spectral Mapping Theorem insures the unicity of the functional calculus and thus it improves Zame's unicity theorem [11, Theorem 1], while the second statement gives a unicity condition which is an analogue of the compatibility property [3, Theorem I.4.1] in spectral theory of several variables in commutative Banach algebras. As a corollary the two functional calculi constructed in [7] and [9] by J. L. Taylor coincide.
 [1]
Richard
Arens and A.
P. Calderón, Analytic functions of several Banach algebra
elements, Ann. of Math. (2) 62 (1955), 204–216.
MR
0071735 (17,177c)
 [2]
Séminaire de Géométrie Analytique (Paris, 1974/75), Asterisque, No. 3637, Soc. Math. France. Paris, 1976.
 [3]
N. Bourbaki, Théories spectrales, Hermann, Paris, 1967.
 [4]
Lars
Hörmander, An introduction to complex analysis in several
variables, D. Van Nostrand Co., Inc., Princeton, N.J.Toronto,
Ont.London, 1966. MR 0203075
(34 #2933)
 [5]
Mihai
Putinar, Functional calculus with sections of an analytic
space, J. Operator Theory 4 (1980), no. 2,
297–306. MR
595418 (82i:32033)
 [6]
Mihai
Putinar, The superposition property for Taylor’s functional
calculus, J. Operator Theory 7 (1982), no. 1,
149–155. MR
650199 (83f:47015)
 [7]
Joseph
L. Taylor, The analyticfunctional calculus for several commuting
operators, Acta Math. 125 (1970), 1–38. MR 0271741
(42 #6622)
 [8]
Joseph
L. Taylor, Homology and cohomology for topological algebras,
Advances in Math. 9 (1972), 137–182. MR 0328624
(48 #6966)
 [9]
Joseph
L. Taylor, A general framework for a multioperator functional
calculus, Advances in Math. 9 (1972), 183–252.
MR
0328625 (48 #6967)
 [10]
F.H. Vasilescu, Multidimensional analytic functional calculus, Ed. Academiei, Bucuresti, 1979. (Roumanian)
 [11]
William
R. Zame, Existence and uniqueness of functional
calculus homomorphisms, Bull. Amer. Math.
Soc. 82 (1976), no. 1, 123–125. MR 0415323
(54 #3412), http://dx.doi.org/10.1090/S000299041976139870
 [1]
 R. F. Arens and A. P. Calderón, Analytic functions of several Banach algebra elements, Ann. of Math. (2) 62 (1955), 204216. MR 0071735 (17:177c)
 [2]
 Séminaire de Géométrie Analytique (Paris, 1974/75), Asterisque, No. 3637, Soc. Math. France. Paris, 1976.
 [3]
 N. Bourbaki, Théories spectrales, Hermann, Paris, 1967.
 [4]
 L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N. J., 1966. MR 0203075 (34:2933)
 [5]
 M. Putinar, Functional calculus with sections of an analytic space, J. Operator Theory 4 (1980), 297306. MR 595418 (82i:32033)
 [6]
 , The superposition property for Taylor's functional calculus, J. Operator Theory 7 (1982), 149155. MR 650199 (83f:47015)
 [7]
 J. L. Taylor, Analytic functional calculus for several commuting operators, Acta Math. 125 (1970), 138. MR 0271741 (42:6622)
 [8]
 , Homology and cohomology for topological algebras, Adv. in Math. 9 (1972), 131182. MR 0328624 (48:6966)
 [9]
 , A general framework for a multioperator functional calculus, Adv. in Math. 9 (1972), 183252. MR 0328625 (48:6967)
 [10]
 F.H. Vasilescu, Multidimensional analytic functional calculus, Ed. Academiei, Bucuresti, 1979. (Roumanian)
 [11]
 W. Zame, Existence and uniqueness of functional calculus homomorphisms, Bull. Amer. Math. Soc. 82 (1976), 123125. MR 0415323 (54:3412)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
47A60,
32C35,
46H30
Retrieve articles in all journals
with MSC:
47A60,
32C35,
46H30
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198307189906
PII:
S 00029939(1983)07189906
Keywords:
Analytic functional calculus,
linear continuous operators,
J. L. Taylor's joint spectrum,
Fréchet module structure,
Riemann domain,
Stein space,
commuting tuple
Article copyright:
© Copyright 1983
American Mathematical Society
