A GAP TAUBERIAN THEOREM
FOR GENERALISED ABSOLUTE ABEL SUMMABILITY

K. SARVOTHAMAN

Abstract. A gap Tauberian theorem for generalised absolute Abel summability \(|A_n|\)

is proved using Mel’nik’s theorem on convolution transforms.

1. Introduction. The well-known gap Tauberian theorem for Abel summability

\((A_0) = (A)\) is a special case of the high indices theorem of Hardy and Littlewood

[2, Theorem 114]. The gap Tauberian theorem for \((A_\alpha)\) summability has been proved

by Krishnan [3]. Zygmund [5] has proved that \(|A, \lambda_n|\) summability implies absolute

convergence when \((\lambda_n)\) satisfies the high indices condition \(\lambda_{n+1}/\lambda_n \geq c > 1\), and

Mel’nik [4] had deduced the same result as a corollary of his general theorem, which

is stated here as Lemma 1. The gap Tauberian theorem for absolute Abel summability

\(|A_0| \equiv |A|\) is a special case of Zygmund’s result when we take \((\lambda_n)\) as a sequence

of integers. The purpose of this note is to show that the gap Tauberian theorem for

absolute \(A_\alpha\) summability \(|A_\alpha|\) can be deduced from Mel’nik’s theorem.

2. Definitions and notations. Let \(\alpha > -1\). For a given series \(\sum_{n=0}^{\infty} a_n\), write

\[A_n = \sum_{r=0}^{n} a_r \quad (n \geq 0), \]

\[\tilde{A}(y) = \sum_{n \leq y} a_n, \]

\[a(x) = \sum_{n=0}^{\infty} a_n \left(\frac{n+\alpha}{\alpha} \right) x^n \quad (0 < x < 1), \]

\[A(x) = \sum_{n=0}^{\infty} A_n \left(\frac{n+\alpha}{\alpha} \right) x^n \quad (0 < x < 1), \]

\[f(x) = (1-x)^{\alpha+1} A(x) \quad (0 < x < 1). \]

We assume that the series defining \(a(x)\) and \(A(x)\) converge for \(0 < x < 1\). \(\sum a_n\) is

summable \((A_\alpha)\) to \(A\) if

\[f(x) = (1-x)^{\alpha+1} A(x) \to A \quad \text{as} \ x \to 1-, \]
and absolutely A_n summable to A ($|A_n|$ summable to A) if
\[\int_0^1 \left| \frac{d}{dx} f(x) \right| dx < \infty \]
and
\[f(x) = (1 - x)^{n+1} A(x) \rightarrow A \quad \text{as} \quad x \rightarrow 1^- . \]
Abel summability and absolute Abel summability are, respectively, A_0 and $|A_0|$ summability methods.

We say, following Mel’nik, that the function $s(v)$ belongs to the class $|T_0|$ if (i) $s(v)$ is of bounded variation in every finite interval; (ii) there exist constants μ, δ and a function $\theta(v)$, depending only on v, such that $0 < \mu$, $\delta \leq 1$, and the inequality
\[\Re \{e^{i\theta} ds(u) \} \geq \mu |ds(u)| \]
is satisfied for all u in $[v - \delta, v + \delta]$.

3. Theorem and lemmas. The main result is

Theorem. If Σa_n is summable $|A_n|$ and satisfies a gap condition
(G) $a_n = 0$ for $n \neq n_k$, where (n_k) is a sequence of positive integers such that
$n_0 > 0$, $n_{k+1}/n_k \geq c > 1$ for all $k = 0, 1, 2, \ldots$, then Σa_n converges absolutely.

We first prove some preliminary lemmas.

Lemma 1. Let the kernel $k(u)$ of the integral transform
\[g(v) = \int_{-\infty}^{\infty} k(v - u) ds(u) \]
be Borel measurable,
\[\sum_{n=-\infty}^{\infty} \sup_{n \leq u < n+1} |k(u)| < \infty , \]
and its Fourier transform
\[K(t) = \int_{-\infty}^{\infty} e^{-iut} k(u) du \neq 0 \]
for $t \in E = (-\infty, \infty)$. Also assume $s(u)$ belongs to the class $|T_0|$ and
\[\int_{v}^{v+1} |ds(u)| \leq M \text{ for } v \in E . \]
Then we can find a constant C depending only on δ, μ and $k(u)$ such that
\[\int_{-\infty}^{\infty} |s(v)| \leq C \int_{-\infty}^{\infty} |g(v)| dv . \]
This is contained in Mel’nik’s theorem. [4, Theorem 1].

Lemma 2. If Σa_n is summable $|A_n|$ and satisfies the gap condition (G), then
\[\int_0^1 |f(x)| dx = \int_{-\infty}^{\infty} |g_1(v)| dv , \]
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where
\(g_1(v) = \int_{-\infty}^{\infty} k_1(v, u) \, ds(u), \)
\(s(u) = \overline{A}(e^u), \)
\(k_1(v, u) = \begin{cases} \frac{(1 - \exp(e^{-v}))^\alpha e^{-v} \exp(-e^{-v}) \Gamma(\alpha + e^u + 1)}{\Gamma(1 + \alpha) \Gamma(e^u)} & \text{for } u \geq 0, \\ k(v - u) & \text{for } u < 0. \end{cases} \)

and
\(k(t) = \exp\{-(\alpha + 1)t - e^{-t}\}/\Gamma(\alpha + 1). \)

Proof. First we find an expression for \(f'(x) \) in terms of \(a_n. \)

\[
f'(x) = -(\alpha + 1)(1 - x)^\alpha \sum_{n=0}^{\infty} \frac{(n + \alpha)}{\alpha} A_n x^n + (1 - x)^{\alpha+1} \sum_{n=0}^{\infty} \frac{(n + \alpha)}{\alpha} A_n x^{n-1}
\]

\[
= (1 - x)^\alpha(\alpha + 1) - \sum_{n=0}^{\infty} \frac{(n + \alpha)}{\alpha} A_n x^n + (1 - x) \sum_{n=1}^{\infty} \frac{(n + \alpha)}{n - 1} A_n x^{n-1}
\]

\[
= (1 - x)^\alpha(\alpha + 1) \left[-A_n \left(\frac{n + \alpha}{\alpha} + \frac{n + \alpha}{n - 1} \right) + A_{n+1} \left(n + 1 + \alpha \right) \right] x^n
\]

\[
= (1 - x)^\alpha(\alpha + 1) \sum_{n=0}^{\infty} \left(\frac{n + 1 + \alpha}{n} \right) a_{n+1} x^n
\]

\[
= (1 - x)^\alpha(\alpha + 1) \sum_{n=1}^{\infty} \frac{(n + \alpha)}{n - 1} a_n x^{n-1}
\]

\[
= (1 - x)^\alpha(\alpha + 1) \int_1^{\infty} \frac{\Gamma(y + \alpha + 1)}{\Gamma(y) \Gamma(\alpha + 2)} x^{y-1} d\overline{A}(y)
\]

\[
= (1 - x)^\alpha \int_1^{\infty} \frac{\Gamma(y + \alpha + 1)}{\Gamma(y) \Gamma(\alpha + 1)} x^{y-1} d\overline{A}(y).
\]

Substituting \(x = \exp\{-e^{-v}\}, y = e^u \), we obtain

\[
f'(x) = F(v) = \int_0^{\infty} \frac{(1 - \exp(-e^{-v}))^\alpha \Gamma(\alpha + e^u + 1)}{\Gamma(1 + \alpha) \Gamma(e^u)} \frac{\exp(-e^{-v})}{\exp(-e^{-v})} d\overline{A}(e^u).
\]

Hence,
\[
\int_0^1 |f'(x)| \, dx = \int_{-\infty}^{\infty} |F(v)| \frac{dx}{dv} dv = \int_{-\infty}^{\infty} |g_1(v)| \, dv.
\]
where

\[g_1(v) = F(v) \frac{dx}{dv} \]

\[= \int_0^\infty \frac{(1 - \exp(-e^{-v}))^\alpha \Gamma(\alpha + e^v + 1)}{\Gamma(1 + \alpha) \Gamma(e^v)} \exp(-e^{-v}) \exp(-e^{-v}) e^{-v} d\bar{A}(e^v) \]

\[= \int_0^\infty \frac{(1 - \exp(-e^{-v}))^\alpha e^{-v}}{\Gamma(1 + \alpha) \Gamma(e^v)} \exp(-e^{-v}) \Gamma(\alpha + e^v + 1) d\bar{A}(e^v) \]

\[+ \int_0^0 k(v - u) d\bar{A}(e^u), \]

because \(a_0 = 0 \) under the assumption of the gap condition (G), and hence \(\bar{A}(e^u) = 0 \) for \(u < 0 \). Here \(k(t) \) is given by (10). Hence,

\[\int_0^1 |f'(x)| dx = \int_{-\infty}^{\infty} k_1(v, u) ds(u), \]

where \(s(u) \) and \(k_1(v, u) \) are given by (8) and (9). □

Mel’nik [4, p. 834] has observed that his theorem can be applied to functions \(g_1(v) \) which are expressible as

\[g_1(v) = \int_{-\infty}^{\infty} k_1(v, u) ds(u), \]

where \(k_1(v, u) \) is not of the canonical form \(k(v - u) \) as in (1) but can be “approximated” to a canonical form in a certain sense. The context of Lemma 3 below is that the kernel \(k_1(v, u) \) appearing in (7) can be approximated in this sense. In the proof of the Theorem in §4 we incorporate the details as to how this approximation is useful.

Lemma 3. If \(k(t) \) and \(k_1(v, u) \) are the kernels of Lemma 2 given by (10) and (9), respectively, and \(-1 < \alpha < 0 \), then

\[\sum_{n=-\infty}^{\infty} \max_{n \leq u < n+1} \int_{-\infty}^{\infty} |k_1(v, u) - k(v - u)| dv = L < \infty. \]

Proof. For \(u < 0 \), \(k_1(v, u) = k(v - u) \) and therefore it suffices to prove

\[\sum_{n=0}^{\infty} \max_{n \leq u < n+1} \int_{-\infty}^{\infty} |k_1(v, u) - k(v - u)| dv = L < \infty. \]

Let \(u \geq 0 \). Then

\[k_1(v, u) - k(v - u) = \frac{(1 - \exp(-e^{-v}))^\alpha e^{-v} \exp(-e^{v-u}) \Gamma(\alpha + e^v + 1)}{\Gamma(1 + \alpha) \Gamma(e^v)} \]

\[= \frac{(1 - x)^\alpha (\log x^{-1}) x^y \Gamma(\alpha + y + 1)}{\Gamma(1 + \alpha) \Gamma(y)} - \frac{y^{\alpha+1}(\log x^{-1})^{\alpha+1} x^y}{\Gamma(1 + \alpha)} \]

\[= x^y \left(\log \frac{1}{x} \right) \left[\frac{(1 - x)^\alpha \Gamma(\alpha + y + 1)}{\Gamma(y) \Gamma(1 + \alpha)} \right] - \left(\log x^{-1} \right)^{\alpha+1}. \]
Now
\[\Gamma(\alpha + y + 1)/\Gamma(y) = y^{\alpha + 1} + O(y^\alpha) \text{ uniformly in } y \geq 1. \]

Also
\[\log x^{-1} = (1 - x) + O(1 - x)^2 \text{ uniformly in } \delta < x < 1 \]

and, since \(\alpha < 0 \), it follows that
\[(\log x^{-1})^\alpha = (1 - x)^\alpha + O(1 - x)^{\alpha + 1} \]

uniformly in \(0 < x < 1 \). It follows that, uniformly in \(y \geq 1, 0 < x < 1 \), (12) is
\[x^y \log x^{-1} \{ O(y^\alpha (1 - x)^\alpha) + O(y^{\alpha + 1} (1 - x)^{\alpha + 1}) \}. \]

Hence, uniformly in \(y \geq 1 \), we have
\[\int_{-\infty}^{\infty} |k_1(v, u) - k(v - u)| dv = O\left\{ y^\alpha \int_0^1 x^{1 - y} (1 - x)^\alpha dx \right\} + O\left\{ y^{\alpha + 1} \int_0^1 x^{1 - y} (1 - x)^{\alpha + 1} dx \right\} = O(1/y) = O(e^{-u}). \]

The lemma follows.

4. Proof of the Theorem. By Theorems 2 and 5 of [1], summability \(|A_\lambda|\) implies \(|A_\mu|\) for \(\lambda > \mu > -1 \). Hence it suffices to prove the theorem for \(-1 < \alpha < 0 \). Define
\[g(v) = \int_{-\infty}^{\infty} k(v - u) ds(u) \]

and apply Lemma 1 to \(g(v) \). It has the canonical form (1). (2) can be easily verified. The Fourier transform of \(k(x) \) is
\[K(t) = \Gamma(\alpha + 1 + it)/\Gamma(\alpha + 1) \neq 0 \]

for any \(t \), hence (3) is satisfied. If (G) is satisfied, and if \(\delta > 0 \) is sufficiently small, it follows that for any \(v \) the interval \([v - \delta, v + \delta]\) contains not more than one point at which the function \(s(u) = \tilde{A}(e^u) \) has a jump. Hence we see that \(s(u) \) belongs to the class \(|T_0| \) where \(\mu = 1, \delta \) depends only on \(c \). Since \(|A_\alpha|\) summability implies \((A_\alpha)\) summability and the gap Tauberian theorem is true for \((A_\alpha)\) summability (vide [3]), \(\sum a_n \) is convergent and hence follows the boundedness of the terms of \(\sum a_n \). In view of (G), (4) now follows. (2) and (4) show that the integral (13) is absolutely convergent. All the requirements of Lemma 1 are satisfied and hence by the conclusion of the same lemma, we obtain
\[\sum_{n=0}^{\infty} |a_n| \leq C \int_{-\infty}^{\infty} |g(v)| dv. \]

Now
\[\int_{-\infty}^{\infty} |g(v)| dv \leq \int_{-\infty}^{\infty} |g(v) - g_1(v)| dv + \int_{-\infty}^{\infty} |g_1(v)| dv, \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(g_1(v) \) is given by (7). Then, substituting for \(g(v) \) and \(g_1(v) \) and applying Lemma 2, we get

\[
\int_{-\infty}^{\infty} |g(v)| \, dv \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |k_1(v, u) - k(v - u)| \, ds(u) \, |dx| + \int_{0}^{1} f'(x) \, dx
\]

\[
\leq \int_{-\infty}^{\infty} |ds(u)| \int_{-\infty}^{\infty} |k_1(v, u) - k(v - u)| \, dv + \int_{0}^{1} f'(x) \, dx
\]

\[
\leq \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} |ds(u)| \max_{n \leq u < n+1} \int_{-\infty}^{\infty} |k_1(v, u) - k(v - u)| \, dv + \int_{0}^{1} f'(x) \, dx
\]

\[
< ML + C' + \int_{0}^{1} f'(x) \, dx \quad \text{(since (4) is satisfied)}
\]

\[
(15) = C' + \int_{0}^{1} f'(x) \, dx.
\]

From (14) and (15), we obtain

\[
\sum_{n=0}^{\infty} |a_n| < C \left[C' + \int_{0}^{1} f'(x) \, dx \right] = C_1 + C \int_{0}^{1} f'(x) \, dx < \infty.
\]

The theorem is proved.

Acknowledgement. I thank Dr. M. S. Rangachari and Professor V. K. Krishnan for their help in the preparation of this note, and the referee for simplifying the proof of Lemma 3.

References

Ramanujan Institute, University of Madras, Madras-600 005, India