On homeomorphism spaces of Hilbert manifolds

Author:
Raymond Y. Wong

Journal:
Proc. Amer. Math. Soc. **89** (1983), 693-704

MSC:
Primary 57N20; Secondary 54C55, 58D05

DOI:
https://doi.org/10.1090/S0002-9939-1983-0718999-2

MathSciNet review:
718999

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a Hilbert manifold modeled on the separable Hilbert space . We prove the following Fibred Homeomorphism Extension Theorem: Let be the product bundle over the -ball , then any (fibred) homeomorphism on extends to a homeomorphism on all if and only if it extends to a mapping on all . Moreover, the size of the extension may be restricted by any open cover on . The result is then applied to study the space of homeomorphisms under various topologies given on . For instance, if and has the compact-open topology, the is an absolute extensor for all metric spaces. A counterexample is provided to show that the statement above may not be generalized to arbitrary manifold .

**[An]**R. D. Anderson,*Spaces of homeomorphisms of finite graphs*, Illinois J. Math. (to appear).**[An-Sc]**R. D. Anderson and R. M. Schori,*Factors of infinite-dimensional manifolds*, Trans. Amer. Math. Soc.**142**(1969), 315-330. MR**0246327 (39:7631)****[Ce]**J. Cerf,*Groupes d'áutomorphismes et groupes de difféomorphismes des variétés compactes de dimension*3 , Bull. Soc. Math. France**87**(1959), 319-329. MR**0116351 (22:7139)****[Ch]**T. A. Chapman,*Homeomorphisms of Hilbert-cube manifolds*, Trans. Amer. Math. Soc.**152**(1973), 227-239. MR**0372863 (51:9067)****[Ch-Wo, II]**T. A. Chapman and R. Y. Wong,*On homeomorphisms of infinite dimensional bundles*. II, Trans. Amer. Math. Soc.**191**(1974), 261-268. MR**0415626 (54:3708b)****[Do]**T. Dobrowolski, correspondence, 1982.**[Du]**J. Dugundji,*Topology*, Allyn & Bacon, Boston, Mass., 1966. MR**0193606 (33:1824)****[Ed-Ki]**, R. D. Edwards and R. Kirby,*Deformations of space of imbeddings*, Ann. of Math. (2)**93**(1971), 63-88. MR**0283802 (44:1032)****[Fe]**S. Ferry,*The homeomorphism group of a compact Hilbert cube manifold is an ANR*, Ann. of Math. (2)**106**(1977), 101-119. MR**0461536 (57:1521)****[Ge]**R. Geoghegan,*On spaces of homeomorphisms, embeddings and functions*. I, Topology**11**(1972), 159-177. MR**0295281 (45:4349)****[He]**D. W. Henderson,*Infinite-dimensional manifolds are open subsets of Hilbert space*, Topology**9**(1970), 25-33. MR**0250342 (40:3581)****[Lu-Ma]**R. Luke and W. K. Mason,*The space of a compact two-manifold is an ANR*, Trans. Amer. Math. Soc.**146**(1972), 275-285. MR**0301693 (46:849)****[Re]**P. Renz',*The contractibility of the homeomorphism group of some product spaces by Wong's method*, Math. Scand.**28**(1971), 182-188. MR**0305426 (46:4556)****[T]**H. Toruńczyk,*Absolute retracts as factors of normed linear spaces*, Fund. Math.**86**(1974), 53-67. MR**0365471 (51:1723)****[T]**-,*Homeomorphism groups of compact Hilbert cube manifolds which are manifolds*, Bulletin, Polish Academy of Science, 1977.**[We]**J. E. West,*Cartesian factors of infinite-dimensional spaces*, Topology Conf. (VPI), Lecture Notes in Math., vol. 375, Springer, Berlin and New York, 1974. MR**0368014 (51:4256)****[Wo]**R. Y. Wong,*On homeomorphisms of certain infinite dimensional spaces*, Trans. Amer. Math. Soc.**128**(1967), 148-154. MR**0214040 (35:4892)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57N20,
54C55,
58D05

Retrieve articles in all journals with MSC: 57N20, 54C55, 58D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1983-0718999-2

Keywords:
Hilbert manifolds,
spaces of homeomorphisms,
absolute neighborhood extensors,
-sets

Article copyright:
© Copyright 1983
American Mathematical Society