Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Non-Tychonoff $ e$-compactifiable spaces


Authors: K. P. Hart and J. Vermeer
Journal: Proc. Amer. Math. Soc. 89 (1983), 725-729
MSC: Primary 54D30; Secondary 54C10, 54D25, 54G20
DOI: https://doi.org/10.1090/S0002-9939-1983-0719005-6
MathSciNet review: 719005
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a non-Tychonoff space $ X$ which is $ e$-compactifiable, thus answering a question of S. Hechler. We also answer a question of R. M. Stephenson: whether there exists a Tychonoff space, the largest $ e$-compactification of which has a noncompact semiregularization.


References [Enhancements On Off] (What's this?)

  • [BS] M. P. Berri and R. H. Sorgenfrey, Minimal regular spaces, Proc. Amer. Math. Soc. 14 (1963), 454-458. MR 0152978 (27:2949)
  • [Ch] J. Chaber, Remarks on open-closed mappings, Fund. Math. 73 (1971), 197-208. MR 0303487 (46:2624)
  • [He] S. H. Hechler, On a notion of weak compactness in non-regular spaces, Studies in Topology (N. M. Stavrakas and K. R. Allen, eds.), Academic Press, New York, 1975, pp. 215-237. MR 0358692 (50:11151)
  • [St] R. M. Stephenson, Not every minimal Hausdorff space is $ e$-compact, Proc. Amer. Math. Soc. 52 (1975), 381-388. MR 0423296 (54:11276)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D30, 54C10, 54D25, 54G20

Retrieve articles in all journals with MSC: 54D30, 54C10, 54D25, 54G20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0719005-6
Keywords: $ e$-compactifiable spaces, perfect maps
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society