Foliations with nonorientable leaves
Authors:
W. G. Dwyer, D. B. Ellis and R. H. Szczarba
Journal:
Proc. Amer. Math. Soc. 89 (1983), 733-737
MSC:
Primary 57R30; Secondary 57R99
DOI:
https://doi.org/10.1090/S0002-9939-1983-0719007-X
MathSciNet review:
719007
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We prove that a codimension one foliation of an orientable paracompact manifold has at most a countable number of nonorientable leaves. We also give an example of a codimension one foliation of a compact orientable manifold with an infinite number of nonorientable leaves.
- [1] D. B. A. Epstein, D. C. Millett and D. Tischler, Leaves without holonomy, J. London Math. Soc. (2) 16 (1977), 548-552. MR 0464259 (57:4193)
- [2] D. Marcus, Number fields, Universitext, Springer-Verlag, New York, 1977. MR 0457396 (56:15601)
- [3] W. S. Massey, Algebraic topology: an introduction, Graduate Texts in Math., vol. 56, Springer-Verlag, New York, 1967. MR 0211390 (35:2271)
- [4] J. F. Plante, Foliations with measure preserving holonomy, Ann. of Math. (2) 102 (1975), 327-361. MR 0391125 (52:11947)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R30, 57R99
Retrieve articles in all journals with MSC: 57R30, 57R99
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1983-0719007-X
Article copyright:
© Copyright 1983
American Mathematical Society