Lie Ideals and Jordan Derivations of Prime Rings

Ram Awtar

Abstract. Herstein proved [1, Theorem 3.3] that any Jordan derivation of a prime ring of characteristic not 2 is a derivation of R. Our purpose is to extend this result on Lie ideals. We prove the following.

Theorem. Let R be any prime ring such that char R ≠ 2 and let U be a Lie ideal of R such that \(u^2 \in U \) for all \(u \in U \). If \(\cdot \), is an additive mapping of R into itself satisfying \((u^2)' = u'u + uu' \) for all \(u \in U \), then \((uv)' = u'v + uv' \) for all \(u, v \in U \).

Introduction. Herstein [1, Theorem 3.3] proved that if \(R \) is a prime ring of characteristic different from 2, then any Jordan derivation of \(R \), i.e., an additive mapping of \(R \) into itself such that \((a^2)' = a'a + aa' \) for all \(a \in R \), is a derivation of \(R \), i.e., an additive mapping of \(R \) into itself such that \((ab)' = a'b + ab' \) for all \(a, b \in R \). In this paper we generalize this result on Lie ideals.

Throughout the paper we assume \(R \) is a prime ring of characteristic not 2. The center of \(R \) is denoted by \(Z \). We always assume \(U \) is a Lie ideal of \(R \) with the condition that \(u^2 \in U \) for all \(u \in U \). We also assume, \(\cdot \), is an additive mapping of \(R \) into itself such that

\((u^2)' = u'u + uu' \) for all \(u \in U \).

Note that \((uv + vu) = (u + v)^2 - (u^2 + v^2) \). Hence \((uv + vu) \) is in \(U \) and condition (i) is equivalent to

\((uv + vu)' = u'v + uv' + v'u + vu' \) for all \(u, v \in U \).

For \(x, y \in R \), let

\[[x, y] = xy - yx \quad \text{and} \quad x^y = (xy)' - x'y - xy'. \]

If \(A \) is a subset of \(R \), we define the centralizer of \(A \)

\[C_R(A) = \{ x \in R | [x, a] = 0 \text{ for all } a \in A \}. \]

An additive subgroup \(U \) of \(R \) is said to be a Lie ideal of \(R \) if \([u, r] \in U \) for all \(u \in U \) and \(r \in R \). For the remainder of the paper, the letters \(u, v, w, u_i, v_i, w_i \) will always denote arbitrary elements in \(U \).

If \(U \) is a commutative Lie ideal of \(R \), then by the proof of Lemma 1.3 [1], \(U \subset Z \). Then from (ii) we get \(2(uv)' = 2(u'v + uv') \). Since \(\text{char } R \neq 2 \), we get the desired conclusion.

Thus we shall always assume \(U \) is a noncommutative Lie ideal of \(R \), i.e., \(U \not\subset Z \).
2. Basic lemmas.

Lemma 1. If \(U \not\subseteq Z \) is a Lie ideal of \(R \), then
\[
(uvu)' = u'vu + uv'u + uvu'
\]
for all \(u, v \in U \).

Proof. The proof is the same as that of Lemma 3.5 of [1], since \(uv + vu \in U \) for \(u, v \in U \).

By linearizing Lemma 1 on \(u \), we get

Lemma 2. If \(U \not\subseteq Z \) is a Lie ideal of \(R \), then
\[
(uvw + wvu)' = u'vw + uv'w + uvw' + w'vu + wvu' + wvu'
\]
for all \(u, v, w \in W \).

Lemma 3. If \(U \not\subseteq Z \) is a Lie ideal of \(R \), then \(u^c[u, v] = 0 \) for all \(u, v \in U \).

Proof. Since for any \(u, v \in U, uv + vu \in U \) and also \(uv - vu \in U \), as \(U \) is a Lie ideal, we have \(2uv \in U \). Therefore, from (i), since \(\text{char } R \neq 2 \), we get
\[
((uv)^2)' = (uv)'(uv) + (uv)(uv)'.
\]
In Lemma 2 replace \(w \) by \(2uv \) to get
\[
2(uv(uv) + (uv)vu)' = 2((u'v^c(uv) + uv'(uv) + uv(uv)')
\]
\[
+ (uv)vu + (uv)v'u + (uv)v'w + (uv)w'u + (uv)w'v + w'vu + wvu')
\]
\[
= 2((u'v + uv')w + (uv)'v'v + 2uv((uv)' + v'u + u'v')).
\]

But
\[
2(uv(uv) + (uv)vu)' = 2((uv)^2 + uv^2u)'
\]
\[
= 2((uv)'uv + uv(uv)') + u'v^2u + u(v'v + v'v' + v'v') + uv^2u')
\]
\[
= 2(((uv)'uv + (u'v + uv')vu) + 2uv((uv)' + v'u + u'v')).
\]
by Lemma 1 and (i). After comparing both expressions, since \(\text{char } R \neq 2 \), we get
\[
\{(uv)' - u'v - uv' \}(uv - vu) = 0, \quad \text{i.e.,} \quad u^c[u, v] = 0 \text{ for all } u, v \in U.
\]

Lemma 4. If \(U \not\subseteq Z \) is a Lie ideal of \(R \), then \([u, v]^c = 0 \) for all \(u, v \in U \).

Proof. Replace \(w \) by \(2vu \) in Lemma 2 and continue by the same procedure as in Lemma 3 to get \([u, v]^c = 0 \). But in view of condition (ii), \(u^c + v^c = 0 \), i.e., \(v^c = -u^c \). So we get the desired conclusion that \([u, v]^c = 0 \) for all \(u, v \in U \).

Lemma 5. If \(U \not\subseteq Z \) is a Lie ideal of \(R \) and, for \(u \in U \), if \(u \in C_R(U) \), then \(u^c \in Z \).

Proof. By [2, Lemma 2], \(C_R(U) = Z \), so \(u \in Z \). From (ii), we have
\[
(2uv)' = (u'v + uv') + 2uv' \quad \text{for all } v \in U.
\]
Replacing \(v \) by \(vw + wc \) in the last equation, we get
\[
(2u(vw + wc))' = (u'(vw + wc) + (vw + wc)u') + 2u(vw + wc)'.
\]
Since \(u \in Z \), by Lemma 2 we get
\[
(2u(vw + wc))' = 2(uvw + wvu)'
\]
\[
= 2(u'vw + uv'w + uvw' + w'vu + wvu' + wvu')
\]
\[
= 2(u'vw + wvu') + 2(u'vw + vw' + w'v + v').
\]
Compare the two expressions for $(2u(vw + wv))'$ to obtain
$$u'(vw - wv) = (vw - wv)u'$$ for all $v, w \in U$,

i.e., $u' \in C_R([U, U]) = C_R(U)$ by [2, Lemma 3]. But, as above, $C_R(U) = Z$, so $u' \in Z$.

Lemma 6. If $U \not\subset Z$ is a Lie ideal of R and, for $u, v \in U$, if $uv = vu$, then $u^c = 0$.

Proof. From Lemma 2, for all $w \in U$,
$$(uvw + wvu)' = u'vw + uv'w + uvw' + w'vu + wv'u + wvu'.$$

But by hypothesis $uv = vu$, so by (ii),
$$(uvw + wvu)' = (uv \cdot w + w \cdot uv)' = (uv)'w + (uv)w' + w'(uv) + w(uv)',$$

since $2uv \in U$ and char $R \neq 2$.

On comparing both expressions for $(uvw + wvu)'$, since $uv = vu$, we get
$$\{(uv)' - u'v - uv'\}w + w\{(vu)' - v'u - vu'\} = 0,$$

so $(u^c)w + w(v^c) = 0$. By (ii) $v^c = -u^c$, so $(u^c)w - w(u^c) = 0$ for all $w \in U$.

Then $u^c \in C_R(U) = Z$ by [2, Lemma 2]. So we conclude that for $u, v \in U$, if $uv = vu$ then $u^c \in Z$, i.e., $(uv)' - u'v - uv' \in Z$. Since $u^2 \in U$ and $u^2v = vu^2$, then
$$(u^2v)' - (u^2)'v - u^2v' \in Z,$$

so
$$(u^2v)' - (u'u + uu')v - u^2v' \in Z,$$

by (i). Again, as $2uv \in U$ and $u(2uv) = (2uv)u$, we get
$$(u(2uv))' - u'(2uv) - u(2uv)' \in Z,$$

i.e.,
$$(u^2v)' - u'(uv) - u(uv)' \in Z,$$

since char $R \neq 2$. Thus
$$u(u^c) = u\{(uv)' - u'v - uv'\} = \{(u^2v)' - (u'u + uu')v - u^2v'\}$$
$$- \{(u^2v)' - u'(uv) - u(uv)'\} \in Z.$$

If $u^c \neq 0$, since R is prime and $u^c \in Z$, then we get $u \in Z$, so by Lemma 5, $u^c \in Z$.

Then by (ii), $u^c = 0$, a contradiction. Hence $u^c = 0$.

3. The main theorem. Now we are in position to prove the following theorem which extends a result of Herstein [1, Theorem 3.3].

Theorem. Let R be a prime ring, char $R \neq 2$, and let U be a Lie ideal of R such that $u^2 \in U$ for all $u \in U$. If $'$ is an additive mapping of R into itself such that $(u^2)' = u'u + uu'$ for all $u \in U$, then $(uv)' = u'v + uv'$ for all $u, v \in U$.

Proof. Linearizing Lemmas 3 and 4 on v, we get
$$u^c[u, w] + u^w[u, v] = 0,$$

i.e.,
$$u^c[u, w] = -u^w[u, v]$$
and
\[(2) \quad [u, w]u^v + [u, v]u^w = 0, \quad \text{i.e.,} \quad [u, w]u^v = -[u, v]u^w.\]

Multiplying by \([u, w_1]\) on the left-hand side of (1) and using (2) and (1) we get
\[(3) \quad [u, v]u^w[u, w_1] = -[u, w_1]u^w[u, v].\]

Let \(w_1 = 2w_1^2v_1^2\) in (3); since \(\text{char} R \neq 2\), we get
\[[u, v]u^w[u, w_1]v_1 + [u, w_1]v_1u^w[u, v] = -[u, w_1]v_1u^w[u, v] - w_1[u, v_1]u^w[u, v]. \]

or
\[(4) \quad [u, v]u^w[u, w_1]v_1 + [u, w_1]v_1u^w[u, v] = -[u, v]u^w[w_1[u, v_1] - w_1[u, v_1]u^w[u, v]]. \]

Applying (1) and (2) to (3) we have
\[[u, v]u^w[u, w_1] = [u, w_1]u^w[u, v], \]
\[[u, w]u^v[u, w_1] = [u, w_1]u^v[u, v]. \]

and using these in (4) we obtain
\[[u, w_1]u^v[u, w]v_1 + [u, w_1]v_1u^w[u, v] = -([u, v]u^w[w_1[u, v_1] - w_1[u, v_1]u^w[u, v]]. \]

In view of (1) and (2), the last equation gives
\[[u, w_1]v_1u^w[u, v] = -([u, v]u^w[w_1[u, v_1] - w_1[u, v_1]u^w[u, v]]. \]

or
\[(5) \quad [u, w_1][u^w[u, w], v_1] = -([u, v]u^w[w_1[u, v_1] - w_1[u, v_1]u^w[u, v]]. \]

In (5), replace \(v_1\) by \(2v_1u_1\) and use (5). Since \(\text{char} R \neq 2\), we get
\[[u, w_1]v_1u^w[u, v] = -([u, v]u^w[w_1[u, v_1] - w_1[u, v_1]u^w[u, v]]. \]

Replace \(v_1\) by \([u, w_1]\) in (6). Then
\[[u, w_1][u^w[u, w], u_1] = -([u, v]u^w[w_1[u, v_1] - w_1[u, v_1]u^w[u, v]]. \]

Write \(v_1 = u_1\) in (5). Then
\[[u, w_1][u^w[u, w], u_1] = -([u, v]u^w[w_1[u, v_1] - w_1[u, v_1]u^w[u, v]]. \]

and using this in the last equation we get
\[-[u, w_1][u^w[u, v]u^w, w_1][u, w_1] = -([u, v]u^w[w_1[u, v_1] - w_1[u, v_1]u^w[u, v]]. \]

or
\[([u, v]u^w[w_1[u, v_1] - w_1[u, v_1]u^w[u, v] + [u, w_1][u^v[u, v]u^w, w_1][u, w_1][u, u_1] = 0. \]

Replace \(u_1\) by \(2u_2u_1\) in the last equation and use it to get
\[([u, v]u^w[w_1[u, v_1] - w_1[u, v_1]u^w[u, v] + [u, w_1][u^v[u, v]u^w, w_1][u, w_1][u, u_1] = 0. \]
If, for some \(u, u_1 \in U \), \(u^{u_1} \neq 0 \), then by Lemma 6 \([u, u_1] \neq 0 \), so by [2, Lemma 4], we get

\[
[[u, v]u^w, w_1][u, w_1] - [u, w_1][[u, v]u^w, w_1] = 0.
\]

Write \(v_1 = w_1 \) in (5). Then in view of the last equation, we have

\[
[u, w_1][u^v[u, w], w_1] = -[[u, v]u^w, w_1][u, w_1] = -[u, w_1][[u, v]u^w, w_1],
\]
or

(7) \([u, w_1][u^v[u, w] + [u, v]u^w, w_1] = 0\).

Linearizing (7) on \(w_1 \) we have

(8) \([u, w_1][u^v[u, w] + [u, v]u^w, v_2] + [u, v_2][u^v[u, w] + [u, v]u^w, w_1] = 0\).

Now replace \(w_1 \) by \(2uw_1 \) in (8). Since char \(R \neq 2 \) we get

\[
u[u, w_1][u^v[u, w] + [u, v]u^w, v_2] + [u, v_2][u^v[u, w] + [u, v]u^w, w_1] = 0.
\]

When \(w_1 = u \) in (8) then \([u, v_2][u^v[u, w] + [u, v]u^w, u] = 0\). Thus from the last equation we get

\[
u[u, w_1][u^v[u, w] + [u, v]u^w, v_2] + [u, v_2][u^v[u, w] + [u, v]u^w, w_1] = 0.
\]

But again in view of (8), the last equation reduces to

\[-u[u, v_2][u^v[u, w] + [u, v]u^w, w_1] + [u, v_2][u^v[u, w] + [u, v]u^w, w_1] = 0,
\]
or

(9) \([u, [u, v_2]][u^v[u, w] + [u, v]u^w, w_1] = 0\).

Replace \(w_1 \) by \(2uw_2w_1 \) in (9) and use (9) to obtain

\([u, [u, v_2]]U[u^v[u, w] + [u, v]u^w, w_1] = 0\).

Then by [2, Lemma 4] either \([u, [u, v_2]] = 0 \) or \([u^v[u, w] + [u, v]u^w, w_1] = 0\). If \([u, [u, v_2]] = 0 \) for all \(v_2 \in U \), then by the Corollary of Theorem 1 [2] \([u, U] = 0\), i.e., \(u \in C_R(U) = Z \) by [2, Lemma 2], so by Lemma 6, \(u^{u_1} = 0 \), a contradiction. Hence

\([u^v[u, w] + [u, v]u^w, w_1] = 0 \) for all \(w_1 \in U \),

i.e., \(u^v[u, w] + [u, v]u^w \in C_R(U) = Z \). Thus, in view of (2), we get

(10) \(u^v[u, w] - [u, w]u^v \in Z \).

Commuting (10) with \(u^v \), since by (2) and Lemma 3, \(u^v[u, w]u^v = 0 \), then

(11) \(u^v(u^v[u, w] + [u, w]u^v) = 0 \).

Commuting (10) with \([u, w] \), since by (1) and Lemma 4 \([u, w]u^v[u, w] = 0 \), we get

(12) \(u^v[u, w]^2 + [u, w]u^v = 0 \).

Let us set \(\alpha = u^v[u, w] \) and \(\beta = [u, w]u^v \). By (2) and Lemma 3, we get \(u^v[u, w]u^v = -u^v[u, v]u^w = 0 \). Thus \(\alpha^2 = 0 \). Similarly, we can show \(\beta^2 = 0 \). In view of (12) and (11) we have

\[\alpha\beta = u^v[u, w]^2u^v = -[u, w]^2u^v = [u, w]u^v[u, w] = \beta\alpha.\]
Now
\[(\alpha - \beta)^3 = \alpha^3 + \alpha \beta^2 + \beta \alpha \beta + \beta^3 - \alpha^2 \beta - \alpha \beta^2 - \beta^3 = 0,\]
since \(\alpha^2 = \beta^2 = 0\) and \(\alpha \beta = \beta \alpha\). Since \(R\) is prime and by (10) \((\alpha - \beta) \in Z\), then \(\alpha - \beta = 0\), i.e., \(\alpha = \beta\). Thus we get
\[(13) \quad \u^v[u, w] = [u, w]u^v, \quad \text{i.e.,} \quad [u^v, [u, w]] = 0.\]
Let \(w = 2wu_3\) in (13). Then
\[
0 = [u^v, [u, 2wu_3]] = 2[u^v, [u, w]u_3 + w[u, u_3]] \\
= 2[u^v, [u, w]u_3] + 2[u^v, w[u, u_3]] \\
= 2[u^v, [u, w]]u_3 + 2[u, w][u^v, u_3] + 2[u^v, w][u, u_3] + 2w[u^v, [u, u_3]].
\]
By (13) the first and fourth terms are zero. Since \(\text{char } R \neq 2\), from above we get
\([u, w][u^v, u_3] + [u^v, w][u, u_3] = 0.\) Now replace \(w\) by \([u, w]\) and, in view of (13), we get
\([u, [u, w]][u^v, u_3] = 0.\) Replace \(u_3\) by \(2v_3u_3\) to get
\([u, [u, w]][u^v, u_3] = 0.\)
By [2, Lemma 4], either \([u, [u, w]] = 0\) or \([u^v, u_3] = 0.\) As above, we have seen that \([u, [u, w]] \neq 0\), therefore \([u^v, u_3] = 0\) and so \(u^v \in C_R(U) = Z.\) By Lemma 3, \(u^{u_3}[u, u_3] = 0.\) Since \(u^{u_3} (\neq 0) \in Z\) and \(R\) is prime, we get \([u, u_3] = 0.\) Therefore by Lemma 6, \(u^{u_3} = 0.\)
Hence for all \(u, v \in U, u^v = 0, \text{i.e.,} (uv)' = u'v + uv'.\)

The author is grateful to the referee for his valuable suggestions and helpful comments.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OFIFE, IFE, NIGERIA