Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On Noetherianness of Nash rings


Authors: Fulvio Mora and Mario Raimondo
Journal: Proc. Amer. Math. Soc. 90 (1984), 30-34
MSC: Primary 13E05; Secondary 14G30, 32B05, 58A07
MathSciNet review: 722409
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a class of rings, called Nash Rings, which generalize the notation of rings of Nash functions.

Let $ k$ be any field, $ X$ be a normal algebraic variety in $ {k^n}$, and $ U \subset X$. A Nash ring $ D$ is the algebraic closure of $ \Gamma (X,{\mathcal{O}_X})$ in a suitable domain $ B$ such that $ U$ is contained in the maximal spectrum of $ B$ and $ \Gamma (X,{\mathcal{O}_X})$ is analytically isomorphic to $ B$ at each $ x \in U$.

We show that $ D$ is a ring of fractions of the integral closure of $ \Gamma (X,{\mathcal{O}_X})$ in $ B$. Moreover, if $ k$ is algebraically nonclosed and if every algebraic subvariety $ V \subset X$ intersects $ U$ in a finite number of connected components (in the topology induced by $ B$), then $ D$ is noetherian.


References [Enhancements On Off] (What's this?)

  • [1] Jacek Bochnak and Gustave Efroymson, Real algebraic geometry and the 17th Hilbert problem, Math. Ann. 251 (1980), no. 3, 213–241. MR 589251, 10.1007/BF01428942
  • [2] Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
  • [3] Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York-London, 1962. MR 0155856
  • [4] Michel Raynaud, Anneaux locaux henséliens, Lecture Notes in Mathematics, Vol. 169, Springer-Verlag, Berlin-New York, 1970 (French). MR 0277519
  • [5] Jean-Jacques Risler, Sur l’anneau des fonctions de Nash globales, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 3, 365–378 (French). MR 0393031
  • [6] Alberto Tognoli, Algebraic geometry and Nash functions, Institutiones Mathematicae [Mathematical Methods], III, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 556239

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13E05, 14G30, 32B05, 58A07

Retrieve articles in all journals with MSC: 13E05, 14G30, 32B05, 58A07


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0722409-X
Keywords: Nash rings, noetherian property, algebraic closure of rings
Article copyright: © Copyright 1984 American Mathematical Society