Mullin's sequence of primes is not monotonic

Author:
Thorkil Naur

Journal:
Proc. Amer. Math. Soc. **90** (1984), 43-44

MSC:
Primary 11A41

DOI:
https://doi.org/10.1090/S0002-9939-1984-0722412-X

MathSciNet review:
722412

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The sequence of primes defined by and is not monotone increasing. We present the first eleven primes of the sequence and observe that .

**[1]**J. Brillhart, D. H. Lehmer and J. L. Selfridge,*New primality criteria and factorizations of*, Math. Comp.**29**(1975), 620-647. MR**0384673 (52:5546)****[2]**C. D. Cox and A. J. van der Poorten,*On a sequence of prime numbers*, J. Austral. Math. Soc.**8**(1968), 571-574. MR**0228417 (37:3998)****[3]**R. Guy and R. Nowakowski,*Discovering primes with Euclid*, Delta (Waukesha)**5**(1975), 49-63. MR**0384675 (52:5548)****[4]**R. R. Korfhage,*On a sequence of prime numbers*, Bull. Amer. Math. Soc.**70**(1964), 341-342; Errata, 747.**[5]**M. A. Morrison and J. Brillhart,*A method of factoring and the factorization of*, Math. Comp.**29**(1975), 183-205. MR**0371800 (51:8017)****[6]**A. A. Mullin,*Recursive function theory*, Bull. Amer. Math. Soc.**69**(1963), 737.**[7]**T. Naur,*Integer factorization*, DAIMI PB-144, Dept. Comput. Sci., Univ. of Aarhus, Denmark, 1982.**[8]**J. M. Pollard,*Theorems on factorization and primality testing*, Proc. Cambridge Philos. Soc.**76**(1974), 521-528. MR**0354514 (50:6992)****[9]**-,*A Monte Carlo method for factorization*, BIT**15**(1975), 331-334. MR**0392798 (52:13611)****[10]**N. J. A. Sloane,*A handbook of integer sequences*, Academic Press, New York, 1973. MR**0357292 (50:9760)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11A41

Retrieve articles in all journals with MSC: 11A41

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1984-0722412-X

Article copyright:
© Copyright 1984
American Mathematical Society