Co-well-powered reflective subcategories
Author:
Rudolf-E. Hoffmann
Journal:
Proc. Amer. Math. Soc. 90 (1984), 45-46
MSC:
Primary 18A40
DOI:
https://doi.org/10.1090/S0002-9939-1984-0722413-1
MathSciNet review:
722413
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A full isomorphism-closed subcategory of a complete well-powered and co-well-powered category
is both co-well-powered (in its own right) and reflective in
if and only if
(a) is closed in
under the formation of (
-small-indexed) limits, and
(b) the epi-reflective hull of
in
is co-well-powered.
- [1] S. Baron, Reflectors as compositions of epi-reflectors, Trans. Amer. Math. Soc. 136 (1969), 499-508. MR 0236237 (38:4535)
- [2] P. Freyd, Abelian categories, Harper & Row, New York, 1964. MR 0166240 (29:3517)
- [3] H. Herrlich, Topologische Reflexionen und Coreflexionen, Lecture Notes in Math., vol. 78, Springer-Verlag, Berlin 1968. MR 0256332 (41:988)
- [4] -, Epireflective subcategories of TOP need not be cowellpowered, Comment. Math. Univ. Carolin. 16 (1975), 713-716. MR 0425882 (54:13832)
- [5] R.-E. Hoffmann, Factorization of cones II, with an application to weak Hausdorff spaces (Proc. Conf. Categorical Aspects of Topology and Analysis, Carleton Univ., Ottawa, 1980), Lecture Notes in Math., vol. 915, Springer-Verlag, Berlin, 1982, pp. 148-170. MR 659890 (84h:18002)
- [6] J. R. Isbell, Natural sums and abelianizing, Pacific J. Math. 14 (1964), 1265-1281. MR 0179230 (31:3478)
- [7] J. F. Kennison, Full reflective subcategories and generalized covering spaces, Illinois J. Math. 12 (1968), 353-365. MR 0227247 (37:2832)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18A40
Retrieve articles in all journals with MSC: 18A40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1984-0722413-1
Keywords:
Reflective subcategory,
co-well-powered category,
epi-reflective hull
Article copyright:
© Copyright 1984
American Mathematical Society