Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Co-well-powered reflective subcategories


Author: Rudolf-E. Hoffmann
Journal: Proc. Amer. Math. Soc. 90 (1984), 45-46
MSC: Primary 18A40
DOI: https://doi.org/10.1090/S0002-9939-1984-0722413-1
MathSciNet review: 722413
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A full isomorphism-closed subcategory $ \mathcal{A}$ of a complete well-powered and co-well-powered category $ \mathcal{C}$ is both co-well-powered (in its own right) and reflective in $ \mathcal{C}$ if and only if

(a) $ \mathcal{A}$ is closed in $ \mathcal{C}$ under the formation of ($ U$-small-indexed) limits, and

(b) the epi-reflective hull $ \mathcal{B}$ of $ \mathcal{A}$ in $ \mathcal{C}$ is co-well-powered.


References [Enhancements On Off] (What's this?)

  • [1] S. Baron, Reflectors as compositions of epi-reflectors, Trans. Amer. Math. Soc. 136 (1969), 499-508. MR 0236237 (38:4535)
  • [2] P. Freyd, Abelian categories, Harper & Row, New York, 1964. MR 0166240 (29:3517)
  • [3] H. Herrlich, Topologische Reflexionen und Coreflexionen, Lecture Notes in Math., vol. 78, Springer-Verlag, Berlin 1968. MR 0256332 (41:988)
  • [4] -, Epireflective subcategories of TOP need not be cowellpowered, Comment. Math. Univ. Carolin. 16 (1975), 713-716. MR 0425882 (54:13832)
  • [5] R.-E. Hoffmann, Factorization of cones II, with an application to weak Hausdorff spaces (Proc. Conf. Categorical Aspects of Topology and Analysis, Carleton Univ., Ottawa, 1980), Lecture Notes in Math., vol. 915, Springer-Verlag, Berlin, 1982, pp. 148-170. MR 659890 (84h:18002)
  • [6] J. R. Isbell, Natural sums and abelianizing, Pacific J. Math. 14 (1964), 1265-1281. MR 0179230 (31:3478)
  • [7] J. F. Kennison, Full reflective subcategories and generalized covering spaces, Illinois J. Math. 12 (1968), 353-365. MR 0227247 (37:2832)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18A40

Retrieve articles in all journals with MSC: 18A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0722413-1
Keywords: Reflective subcategory, co-well-powered category, epi-reflective hull
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society