Tales about tails

Author:
Haakon Waadeland

Journal:
Proc. Amer. Math. Soc. **90** (1984), 57-64

MSC:
Primary 40A15; Secondary 30B70

DOI:
https://doi.org/10.1090/S0002-9939-1984-0722415-5

MathSciNet review:
722415

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Necessary and sufficient conditions are given for a sequence to be a sequence of tails of a convergent continued fraction. Some special cases are also studied.

**[1]**T. S. Chihara,*Chain sequences and orthogonal polynomials*, Trans. Amer. Math. Soc.**104**(1962), 1–16. MR**0138933**, https://doi.org/10.1090/S0002-9947-1962-0138933-7**[2]**T. S. Chihara,*Orthogonal polynomials whose zeros are dense in intervals*, J. Math. Anal. Appl.**24**(1968), 362–371. MR**0232029**, https://doi.org/10.1016/0022-247X(68)90037-1**[3]**T. S. Chihara,*Orthogonal polynomials whose distribution functions have finite point spectra*, SIAM J. Math. Anal.**11**(1980), no. 2, 358–364. MR**559875**, https://doi.org/10.1137/0511033**[4]**Lisa Jacobsen,*Convergence acceleration for continued fractions 𝐾(𝑎_{𝑛}/1)*, Trans. Amer. Math. Soc.**275**(1983), no. 1, 265–285. MR**678349**, https://doi.org/10.1090/S0002-9947-1983-0678349-1**[5]**-,*A method for convergence acceleration of continued fractions*, Lectures Notes in Math., 932, Springer-Verlag, Berlin and New York, 1982, pp. 74-86.**[6]**-,*Further results on convergence acceleration for continued fraction*, Trans. Amer. Math. Soc. (to appear).**[7]**-,*Functions defined by continued fractions. M eromorphic continuation*(submitted).**[8]**-,*Convergence of limit**-periodic continued fractions**and of subsequences of their tails*(in preparation).**[9]**Lisa Jacobsen and Haakon Waadeland,*Some useful formulas involving tails of continued fractions*, Analytic theory of continued fractions (Loen, 1981) Lecture Notes in Math., vol. 932, Springer, Berlin-New York, 1982, pp. 99–105 (English, with Russian summary). MR**690457****[10]**William B. Jones and Wolfgang J. Thron,*Continued fractions*, Encyclopedia of Mathematics and its Applications, vol. 11, Addison-Wesley Publishing Co., Reading, Mass., 1980. Analytic theory and applications; With a foreword by Felix E. Browder; With an introduction by Peter Henrici. MR**595864****[11]**O. Perron,*Die Lehre von den Kettenbrüchen*, 3. Aufl., 2. Band, Teubuer, Stuttgart, 1957.**[12]**A. Pringsheim,*Über die Konvergenz unendlicher Kettenbrüche*, Bayer. Akad. Nat. Wiss. Kl. Sitz. Ber.**28**(1899), 295-324.**[13]**W. J. Thron and Haakon Waadeland,*Modifications of continued fractions, a survey*, Analytic theory of continued fractions (Loen, 1981) Lecture Notes in Math., vol. 932, Springer, Berlin-New York, 1982, pp. 38–66. MR**690452****[14]**W. J. Thron and Haakon Waadeland,*On a certain transformation of continued fractions*, Analytic theory of continued fractions (Loen, 1981) Lecture Notes in Math., vol. 932, Springer, Berlin-New York, 1982, pp. 225–240. MR**690464****[15]**H. S. Wall,*Analytic theory of continued fractions*, Chelsea, New York, 1967.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
40A15,
30B70

Retrieve articles in all journals with MSC: 40A15, 30B70

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1984-0722415-5

Keywords:
Continued fraction,
right tails,
wrong tails

Article copyright:
© Copyright 1984
American Mathematical Society