Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Tales about tails


Author: Haakon Waadeland
Journal: Proc. Amer. Math. Soc. 90 (1984), 57-64
MSC: Primary 40A15; Secondary 30B70
DOI: https://doi.org/10.1090/S0002-9939-1984-0722415-5
MathSciNet review: 722415
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Necessary and sufficient conditions are given for a sequence $ \left\{ {{g^{(n)}}} \right\}$ to be a sequence of tails of a convergent continued fraction. Some special cases are also studied.


References [Enhancements On Off] (What's this?)

  • [1] T. S. Chihara, Chain sequences and orthogonal polynomials, Trans. Amer. Math. Soc. 104 (1962), 1-16. MR 0138933 (25:2373)
  • [2] -, Orthogonal polynomials whose zeros are dense in intervals, J. Math. Anal. Appl. 24 (1968), 362-371. MR 0232029 (38:355)
  • [3] -, Orthogonal polynomials whose distribution functions have finite point spectra, SIAM J. Math. Anal. 11 (1980) 358-364. MR 559875 (81e:42032)
  • [4] Lisa Jacobsen, Convergence acceleration for continued fractions $ K({a_n}/1)$, Trans. Amer. Math. Soc. 275 (1983), 265-285. MR 678349 (84a:40002)
  • [5] -, A method for convergence acceleration of continued fractions $ K({a_n}/1)$, Lectures Notes in Math., 932, Springer-Verlag, Berlin and New York, 1982, pp. 74-86.
  • [6] -, Further results on convergence acceleration for continued fraction $ K({a_n}/1)$, Trans. Amer. Math. Soc. (to appear).
  • [7] -, Functions defined by continued fractions. M eromorphic continuation (submitted).
  • [8] -, Convergence of limit $ k$-periodic continued fractions $ K({a_n}/{b_n})$ and of subsequences of their tails (in preparation).
  • [9] Lisa Jacobsen and Haakon Waadeland, Some useful formulas involving tails of continued fractions, Lecture Notes in Math., vol. 932, Springer-Verlag, Berlin and New York, 1982, pp. 99-105. MR 690457 (84c:40004)
  • [10] William B. Jones and Wolfgang J. Thron, Continued fractions: analytic theory and applications, Encyclopedia Math. Appl., No. 11, Addison-Wesley, Reading, Mass., 1980. MR 595864 (82c:30001)
  • [11] O. Perron, Die Lehre von den Kettenbrüchen, 3. Aufl., 2. Band, Teubuer, Stuttgart, 1957.
  • [12] A. Pringsheim, Über die Konvergenz unendlicher Kettenbrüche, Bayer. Akad. Nat. Wiss. Kl. Sitz. Ber. 28 (1899), 295-324.
  • [13] W. J. Thron and Haakon Waadeland, Modifications of continued fractions, a survey, Lecture Notes in Math., vol. 932, Springer-Verlag, Berlin and New York, 1982, pp. 38-66. MR 690452 (84j:30013)
  • [14] -, On a certain transformation of continued fractions, Lecture Notes in Math., vol. 932, Springer-Verlag, Berlin and New York, 1982, pp. 225-240. MR 690464 (84c:30012)
  • [15] H. S. Wall, Analytic theory of continued fractions, Chelsea, New York, 1967.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40A15, 30B70

Retrieve articles in all journals with MSC: 40A15, 30B70


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0722415-5
Keywords: Continued fraction, right tails, wrong tails
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society