Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Oscillation theorems for $ n$th order nonlinear differential equations with deviating arguments


Authors: S. R. Grace and B. S. Lalli
Journal: Proc. Amer. Math. Soc. 90 (1984), 65-70
MSC: Primary 34C10
DOI: https://doi.org/10.1090/S0002-9939-1984-0722416-7
MathSciNet review: 722416
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we study the oscillatory behavior of solutions of the $ n$ th order nonlinear functional differential equation

$\displaystyle {x^{(n)}}(t) + q(t)f(x\left[ {g(t)} \right]) = 0,\quad n\;{\text{even,}}$

without assuming that the deviating argument is retarded or advanced. Sufficient conditions are established for all solutions of the equation to be oscillatory.

References [Enhancements On Off] (What's this?)

  • [1] M. K. Grammatikopoulos, Y. G. Sficas and V. A. Staikos, Oscillatory properties of strongly superlinear differential equations with deviating arguments, J. Math. Anal. Appl. 67 (1979), 171 -187. MR 524471 (80c:34072)
  • [2] A. G. Kartsatos, Recent results on oscillation of solutions of forced and perturbed nonlinear differential equations of even order, Stability of Dynamical Systems: Theory and Applications, Lecture Notes in Pure and Appl. Math., vol. 28, Dekker, New York, 1977, pp. 17-72. MR 0594954 (58:28853)
  • [3] Y. Kitamura and T. Kusano, Oscillation of first order nonlinear differential equations with deviating arguments, Proc. Amer. Math. Soc. 78 (1980), 64-68. MR 548086 (80j:34096)
  • [4] T. Kusano and H. Onose, Oscillatory and asymptotic behavior of sublinear retarded differential equations, Hiroshima Math. J. 4 (1974), 343-355. MR 0350154 (50:2647)
  • [5] I. Ličko and M. Švec, Le caractere oscillatoire des solutions de l'equation $ {y^{(n)}} + f(x){y^\alpha } = 0$, $ n > 1$, Czechoslovak Math. J. 13 (1963), 481-489. MR 0161001 (28:4210)
  • [6] Z. Opial, Sur une critére d'oscillation différentielle $ (Q(t)x')' + f(t)x = 0$, Ann. Polon. Math. 6 (1959), 99-104. MR 0104876 (21:3627)
  • [7] Y. G. Sficas and V. A. Staikos, Oscillations of retarded differential equations, Math. Proc. Cambridge Philos. Soc. 75 (1974), 95-101. MR 0333402 (48:11727)
  • [8] U. Sztaba, Note on the Dahiya and Singh's paper: on oscillation behavior of even order delay equations, J. Math. Anal. Appl. 63 (1978), 313-318. MR 489226 (82f:34094)
  • [9] J. S. W. Wong, Second order oscillation with retarded arguments, Ordinary Differential Equations, Academic Press, New York, 1972, pp. 581-596. MR 0425310 (54:13266)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C10

Retrieve articles in all journals with MSC: 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0722416-7
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society