Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weighted group algebra as an ideal in its second dual space


Author: F. Ghahramani
Journal: Proc. Amer. Math. Soc. 90 (1984), 71-76
MSC: Primary 43A22; Secondary 43A15, 46J99, 47B99
DOI: https://doi.org/10.1090/S0002-9939-1984-0722417-9
MathSciNet review: 722417
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a locally compact group $ G$ let $ {L^1}(G,\omega \lambda )$ be a weighted group algebra. We characterize compact and weakly compact multipliers on $ {L^1}(G,\omega \lambda )$. This characterization is employed to find a necessary and sufficient condition for $ {L^1}(G,\omega \lambda )$ to be an ideal in its second dual space, where the second dual is equipped with an Arens product. In the special case where $ \omega (t) = 1(t \in G)$, we deduce a result due to K. P. Wong that if $ G$ is a compact group, then $ {L^1}(G,\lambda )$ is an ideal in its second dual space and its converse due to S. Watanabe.


References [Enhancements On Off] (What's this?)

  • [1] C. Akemann, Some mapping properties of the group algebras of a compact group, Pacific J. Math. 22 (1967), 1-8. MR 0212587 (35:3458)
  • [2] R. Arens, Operators in function classes, Monatsh. Math. 55 (1951), 1-19. MR 0044109 (13:372b)
  • [3] -, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848. MR 0045941 (13:659f)
  • [4] W. G. Bade and H. G. Dales, Norms and ideals in radical convolution algebras, J. Funct. Anal. 41 (1981), 77-109. MR 614227 (82k:46082)
  • [5] S. K. Berberian, Lectures in functional analysis and operator theory, Springer-Verlag, Berlin and New York, 1974. MR 0417727 (54:5775)
  • [6] J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A. 84 (1979), 309-325. MR 559675 (81f:46057)
  • [7] N. Dunford and J. Schwartz, Linear operators, Part 1, Interscience, New York, 1958.
  • [8] F. Ghahramani, Homomorphisms and derivations on weighted convolution algebras, J. London Math. Soc. 21 (1980), 149-161. MR 576191 (81j:43009)
  • [9] -, Compact elements of weighted group algebras, Pacific J. Math. (to appear). MR 745596 (85i:43004)
  • [10] F. P. Greenleaf, Norm decreasing homomorphisms of group algebras, Pacific J. Math. 15 (1965), 1187-1219. MR 0194911 (33:3117)
  • [11] M. Grosser, $ {L^1}(G)$ as an ideal in its second dual space, Proc. Amer. Math. Soc. 73 (1979), 363-364. MR 518521 (82i:43005)
  • [12] D. L. Johnson, A characterization of compact groups, Proc. Amer. Math. Soc. 74 (1979), 381-382. MR 524322 (80d:43004)
  • [13] H. Ricter, Classical harmonic analysis and locally compact groups, Oxford Univ. Press, Oxford, 1968. MR 0306811 (46:5933)
  • [14] S. Sakai, Weakly compact operators on operator algebras, Pacific J. Math. 14 (1964), 659-664. MR 0163185 (29:488)
  • [15] S. Watanabe, A Banach algebra which is an ideal in the second dual space, Sci. Rep. Niigata Univ. Ser. A 11 (1974), 95-101. MR 0383079 (52:3960)
  • [16] -, A Banach algebra which is an ideal in the second dual space II, Sci. Rep. Niigata Univ. Ser. A 13 (1976), 43-48.
  • [17] K. P. Wong, On the Arens product and annihilator algebras, Proc. Amer. Math. Soc. 30 (1971), 79-83. MR 0281005 (43:6724)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A22, 43A15, 46J99, 47B99

Retrieve articles in all journals with MSC: 43A22, 43A15, 46J99, 47B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0722417-9
Keywords: Weighted group algebra, compact multiplier, Arens product
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society