Embedding phenomena based upon decomposition theory: locally spherical but wild codimension one spheres

Author:
Robert J. Daverman

Journal:
Proc. Amer. Math. Soc. **90** (1984), 139-144

MSC:
Primary 57N50; Secondary 54B15, 57M30, 57N15, 57N45

MathSciNet review:
722432

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For we describe an -sphere wildly embedded in the -sphere yet every point of has arbitrarily small neighborhoods bounded by flat -spheres, each intersecting in an -sphere. Not only do these examples for large run counter to what can occur when , they also illustrate the sharpness of high-dimensional taming theorems developed by Cannon and Harrold and Seebeck. Furthermore, despite their wildness, they have mapping cylinder neighborhoods, which both run counter to what is possible when and also partially illustrate the sharpness of another high-dimensional taming theorem due to Bryant and Lacher.

**[1]**Edward G. Begle,*The Vietoris mapping theorem for bicompact spaces*, Ann. of Math. (2)**51**(1950), 534–543. MR**0035015****[2]**J. L. Bryant and R. C. Lacher,*Embeddings with mapping cylinder neighborhoods*, Topology**14**(1975), 191–201. MR**0394680****[3]**C. E. Burgess,*Characterizations of tame surfaces in 𝐸³*, Trans. Amer. Math. Soc.**114**(1965), 80–97. MR**0176456**, 10.1090/S0002-9947-1965-0176456-2**[4]**J. W. Cannon,*Characterization of taming sets on 2-spheres*, Trans. Amer. Math. Soc.**147**(1970), 289–299. MR**0257996**, 10.1090/S0002-9947-1970-0257996-6**[5]**J. W. Cannon,*𝑈𝐿𝐶 properties in neighbourhoods of embedded surfaces and curves in 𝐸³*, Canad. J. Math.**25**(1973), 31–73. MR**0314037****[6]**J. W. Cannon,*Shrinking cell-like decompositions of manifolds. Codimension three*, Ann. of Math. (2)**110**(1979), no. 1, 83–112. MR**541330**, 10.2307/1971245**[7]**A. V. Černavskiĭ,*The identity of local flatness and local simple connectedness for imbeddings of (𝑛-1)-dimensional into 𝑛-dimensional manifolds when 𝑛>4*, Mat. Sb. (N.S.)**91(133)**(1973), 279–286, 288 (Russian). MR**0334222****[8]**Robert J. Daverman,*Locally nice codimension one manifolds are locally flat*, Bull. Amer. Math. Soc.**79**(1973), 410–413. MR**0321095**, 10.1090/S0002-9904-1973-13190-8**[9]**Robert J. Daverman,*Embedding phenomena based upon decomposition theory: wild Cantor sets satisfying strong homogeneity properties*, Proc. Amer. Math. Soc.**75**(1979), no. 1, 177–182. MR**529237**, 10.1090/S0002-9939-1979-0529237-7**[10]**W. T. Eaton,*A note about locally spherical spheres*, Canad. J. Math.**21**(1969), 1001–1003. MR**0244969****[11]**Robert D. Edwards,*The topology of manifolds and cell-like maps*, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 111–127. MR**562601****[12]**O. G. Harrold Jr.,*Locally peripherally unknotted surfaces in 𝐸³*, Ann. of Math. (2)**69**(1959), 276–290. MR**0105660****[13]**O. G. Harrold and C. L. Seebeck,*Locally weakly flat spaces*, Trans. Amer. Math. Soc.**138**(1969), 407–414. MR**0239597**, 10.1090/S0002-9947-1969-0239597-0**[14]**V. L. Klee Jr.,*Some topological properties of convex sets*, Trans. Amer. Math. Soc.**78**(1955), 30–45. MR**0069388**, 10.1090/S0002-9947-1955-0069388-5**[15]**Chris Lacher and Alden Wright,*Mapping cylinders and 4-manifolds*, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 424–427. MR**0271951****[16]**L. D. Loveland,*Tame surfaces and tame subsets of spheres in 𝐸³*, Trans. Amer. Math. Soc.**123**(1966), 355–368. MR**0199850**, 10.1090/S0002-9947-1966-0199850-3**[17]**M. H. A. Newman,*The engulfing theorem for topological manifolds*, Ann. of Math. (2)**84**(1966), 555–571. MR**0203708****[18]**Victor Nicholson,*Mapping cylinder neighborhoods*, Trans. Amer. Math. Soc.**143**(1969), 259–268. MR**0248788**, 10.1090/S0002-9947-1969-0248788-4**[19]**T. M. Price and C. L. Seebeck III,*Somewhere locally flat codimension one manifolds with 1-𝑈𝐿𝐶 complements are locally flat*, Trans. Amer. Math. Soc.**193**(1974), 111–122. MR**0346796**, 10.1090/S0002-9947-1974-0346796-8**[20]**Edwin H. Spanier,*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57N50,
54B15,
57M30,
57N15,
57N45

Retrieve articles in all journals with MSC: 57N50, 54B15, 57M30, 57N15, 57N45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1984-0722432-5

Keywords:
Wild embedding,
locally flat,
codimension one sphere,
locally spherical,
locally weakly flat,
homology cell,
upper semicontinuous decomposition

Article copyright:
© Copyright 1984
American Mathematical Society