Resolving acyclic images of nonorientable three-manifolds

Authors:
Dušan Repovš and R. C. Lacher

Journal:
Proc. Amer. Math. Soc. **90** (1984), 157-161

MSC:
Primary 57P05; Secondary 57M35, 57N10, 57P99

MathSciNet review:
722436

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every -homology -manifold (without boundary) which is an almost -acyclic (over ) proper image of a *nonorientable* -manifold (without boundary) is a resolvable generalized -manifold. The analogous result for the case when is *orientable* was recently proved by J. L. Bryant and R. C. Lacher.

**[1]**J. L. Bryant and R. C. Lacher,*A Hopf-like invariant for mappings between odd-dimensional manifolds*, General Topology and Appl.**8**(1978), no. 1, 47–62. MR**0500979****[2]**J. L. Bryant and R. C. Lacher,*Resolving acyclic images of three-manifolds*, Math. Proc. Cambridge Philos. Soc.**88**(1980), no. 2, 311–319. MR**578275**, 10.1017/S0305004100057613**[3]**John Hempel,*3-Manifolds*, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. MR**0415619****[4]**Tom Knoblauch,*Imbedding compact 3-manifolds in 𝐸³*, Proc. Amer. Math. Soc.**48**(1975), 447–453. MR**0368010**, 10.1090/S0002-9939-1975-0368010-6**[5]**George Kozlowski and John J. Walsh,*The cell-like mapping problem*, Bull. Amer. Math. Soc. (N.S.)**2**(1980), no. 2, 315–316. MR**555270**, 10.1090/S0273-0979-1980-14747-3**[6]**R. C. Lacher,*Some mapping theorems*, Trans. Amer. Math. Soc.**195**(1974), 291–303. MR**0350743**, 10.1090/S0002-9947-1974-0350743-2**[7]**R. C. Lacher,*Cell-like mappings and their generalizations*, Bull. Amer. Math. Soc.**83**(1977), no. 4, 495–552. MR**0645403**, 10.1090/S0002-9904-1977-14321-8**[8]**R. C. Lacher and D. R. McMillan Jr.,*Partially acyclic mappings between manifolds*, Amer. J. Math.**94**(1972), 246–266. MR**0301743****[9]**D. R. McMillan Jr.,*Acyclicity in three-manifolds*, Bull. Amer. Math. Soc.**76**(1970), 942–964. MR**0270380**, 10.1090/S0002-9904-1970-12510-1**[10]**D. R. McMillan Jr. and T. L. Thickstun,*Open three-manifolds and the Poincaré conjecture*, Topology**19**(1980), no. 3, 313–320. MR**579580**, 10.1016/0040-9383(80)90016-6**[11]**D. Repovš,*Generalized three-manifolds with zero-dimensional singular set*, Ph. D. Thesis, Florida State University, Tallahassee, 1983.**[12]**J. H. C. Whitehead,*A certain open manifold whose group is a unity*, Quart. J. Math. Oxford Ser.**6**(1935), 268-279.**[13]**Alden Wright,*Mappings from 3-manifolds onto 3-manifolds*, Trans. Amer. Math. Soc.**167**(1972), 479–495. MR**0339186**, 10.1090/S0002-9947-1972-0339186-3

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57P05,
57M35,
57N10,
57P99

Retrieve articles in all journals with MSC: 57P05, 57M35, 57N10, 57P99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1984-0722436-2

Keywords:
Generalized -manifolds,
resolutions,
neighborhoods of compacta in nonorientable -manifolds

Article copyright:
© Copyright 1984
American Mathematical Society