Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Automorphism groups of ruled function fields and a problem of Zariski


Author: James K. Deveney
Journal: Proc. Amer. Math. Soc. 90 (1984), 178-180
MSC: Primary 12F20; Secondary 14H05
MathSciNet review: 727227
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {K_1}$ and $ {K_2}$ be finitely generated extensions of a field $ K$ and let $ x$ be transcendental over $ {K_1}$ and $ {K_2}$, and assume $ {K_1}(x) = {K_2}(x)$. The main results show that if $ K$ is infinite and the group of automorphisms of $ {K_2}$ over $ K$ is finite, or if $ K$ is finite and the group of automorphisms of $ \bar K{K_2}$ over $ \bar K$ ($ \bar K$ the algebraic closure of $ K$) is finite, then $ {K_1}$ equals $ {K_2}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12F20, 14H05

Retrieve articles in all journals with MSC: 12F20, 14H05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1984-0727227-4
PII: S 0002-9939(1984)0727227-4
Keywords: Function field, automorphisms
Article copyright: © Copyright 1984 American Mathematical Society