Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Automorphism groups of ruled function fields and a problem of Zariski

Author: James K. Deveney
Journal: Proc. Amer. Math. Soc. 90 (1984), 178-180
MSC: Primary 12F20; Secondary 14H05
MathSciNet review: 727227
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {K_1}$ and $ {K_2}$ be finitely generated extensions of a field $ K$ and let $ x$ be transcendental over $ {K_1}$ and $ {K_2}$, and assume $ {K_1}(x) = {K_2}(x)$. The main results show that if $ K$ is infinite and the group of automorphisms of $ {K_2}$ over $ K$ is finite, or if $ K$ is finite and the group of automorphisms of $ \bar K{K_2}$ over $ \bar K$ ($ \bar K$ the algebraic closure of $ K$) is finite, then $ {K_1}$ equals $ {K_2}$.

References [Enhancements On Off] (What's this?)

  • [1] J. Deveney, Ruled function fields, Proc. Amer. Math. Soc. 86 (1982), 213-215. MR 667276 (84a:12031)
  • [2] J. Deveney and J. Mordeson, Subfields and invariants of inseparable field extensions, Canad. J. Math. 29 (1977), 1304-1311. MR 0472782 (57:12472)
  • [3] D. Husemoller, Finite automorphism groups of algebraic varieties, Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R. I., 1980, pp. 611-619. MR 604638 (82f:14019)
  • [4] M. Nagata, A theorem on valuation rings and its applications, Nagoya Math. J. 29 (1967), 85-91. MR 0207688 (34:7503)
  • [5] P. Roquette, Isomorphisms of generic splitting fields of simple algebras, J. Reine Angew. Math. 214-215 (1964), 207-226. MR 0166215 (29:3492)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12F20, 14H05

Retrieve articles in all journals with MSC: 12F20, 14H05

Additional Information

Keywords: Function field, automorphisms
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society